911 research outputs found

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    Design and Test Space Exploration of Transport-Triggered Architectures

    Get PDF
    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The method, that calculates the testability of the system, helps the designer to assess the obtained architectures with respect to test, area and throughput in the early phase of the design and selects the most suitable one. In order to create the templated TTA, the ¿MOVE¿ framework has been addressed. The approach is validated with respect to the ¿Crypt¿ Unix applicatio

    Hierarchical clustered register file organization for VLIW processors

    Get PDF
    Technology projections indicate that wire delays will become one of the biggest constraints in future microprocessor designs. To avoid long wire delays and therefore long cycle times, processor cores must be partitioned into components so that most of the communication is done locally. In this paper, we propose a novel register file organization for VLIW cores that combines clustering with a hierarchical register file organization. Functional units are organized in clusters, each one with a local first level register file. The local register files are connected to a global second level register file, which provides access to memory. All intercluster communications are done through the second level register file. This paper also proposes MIRS-HC, a novel modulo scheduling technique that simultaneously performs instruction scheduling, cluster selection, inserts communication operations, performs register allocation and spill insertion for the proposed organization. The results show that although more cycles are required to execute applications, the execution time is reduced due to a shorter cycle time. In addition, the combination of clustering and hierarchy provides a larger design exploration space that trades-off performance and technology requirements.Peer ReviewedPostprint (published version

    Instruction-set architecture synthesis for VLIW processors

    Get PDF
    corecore