17,924 research outputs found

    Affect and believability in game characters:a review of the use of affective computing in games

    Get PDF
    Virtual agents are important in many digital environments. Designing a character that highly engages users in terms of interaction is an intricate task constrained by many requirements. One aspect that has gained more attention recently is the effective dimension of the agent. Several studies have addressed the possibility of developing an affect-aware system for a better user experience. Particularly in games, including emotional and social features in NPCs adds depth to the characters, enriches interaction possibilities, and combined with the basic level of competence, creates a more appealing game. Design requirements for emotionally intelligent NPCs differ from general autonomous agents with the main goal being a stronger player-agent relationship as opposed to problem solving and goal assessment. Nevertheless, deploying an affective module into NPCs adds to the complexity of the architecture and constraints. In addition, using such composite NPC in games seems beyond current technology, despite some brave attempts. However, a MARPO-type modular architecture would seem a useful starting point for adding emotions

    Developing a Model-Based Systems Engineering (MBSE) Land Domain Construct for Marine Corps Systems Command

    Get PDF
    NPS NRP Technical ReportThe purpose of this research is to consider four major areas for designing and analyzing an ontology, and conceptual data model (CDM) that can be applied across the Land Domain. Focus area 1 considers the importance of designing a generic (simple) ontology that comprehensively represents the system across the lifecycle. As such, an ontology that will serve as the foundation of the Land Domain will be described. Focus area 2 analyzes the relationships between entities defined within the ontology. System structure identifies the elements of the system that connect and interact with each other to achieve the system's purpose, and depicts how behavior will emerge within the system. A previously developed generic CDM will be analyzed, and further defined where needed, to serve as the basis of a common terminology and structure for the Land Domain. Focus area 3 considers the ontology as a foundation for an authoritative source of truth. This research will demonstrate the utility of having authoritative data within a defined structure, and validate the generic ontology and CDM using an example mission thread. Finally, focus area 4 will design a roadmap (modeling plan) depicting the recommended path to transition from document-based systems engineering to a true MBSE-based Land Domain.Marine Corps Systems Command (MARCORSYSCOM)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Evaluating systems of systems against mission requirements

    Get PDF
    This thesis investigates the nature of systems problems and the need for an open viewpoint to explain a system by viewing it as part of a larger whole and explaining its role in terms of that larger whole. The problem this research investigates is wicked and hence is unique in each instance. Therefore, an empirical proof would only hold for that particular instantiation of the problem, not the problem as a whole. After exposing some of the limitations of traditional systems engineering to this type of problem it is clear that a new approach is needed. The approach taken in the thesis is model driven and it is the architecture of this approach that is the stable artefact rather than the artefacts of a particular solution. The approach developed in this research has been demonstrated to be practicable. Specifically, this research has developed and demonstrated a novel approach for a decision support system that can be used to analyse a system of systems as part of a larger whole from both open and closed viewpoints in order to support the decision of which systems to use to conduct a particular military mission. Such planning decisions are wicked due to the uncertain and unique nature of military missions. Critical rationalism was used to validate the model driven approach and to falsify a parametric approach representative of traditional systems engineering through historical case studies. The main issue found with the parametric approach was the entanglement of functionality with the individual systems selected to implement the system of systems. The advantage of the model driven approach is that it separates functionality from implementation and uses model transformation for systems specification. Thus, although wicked problems do not have an exhaustively describable set of potential solutions this thesis has shown that they are not unapproachable

    A Hybrid Communications Network Simulation-Independent Toolkit

    Get PDF
    Net-centric warfare requires information superiority to enable decision superiority, culminating in insurmountable combat power against our enemies on the battlefield. Information superiority must be attained and retained for success in today’s joint/coalition battlespace. To accomplish this goal, our combat networks must reliably, expediently and completely deliver over a wide range of mobile and fixed assets. Furthermore, each asset must be given special consideration for the sensitivity, priority and volume of information required by the mission. Evolving a grand design of the enabling network will require a flexible evaluation platform to try and select the right combination of network strategies and protocols in the realms of topology control and routing. This research will result in a toolkit for ns2 that will enable rapid interfacing and evaluation of new networking algorithms and/or protocols. The toolkit will be the springboard for development of an optimal, multi-dimensional and flexible network for linking combat entities in the battlespace

    Hard-Real-Time Computing Performance in a Cloud Environment

    Get PDF
    The United States Department of Defense (DoD) is rapidly working with DoD Services to move from multi-year (e.g., 7-10) traditional acquisition programs to a commercial industrybased approach for software development. While commercial technologies and approaches provide an opportunity for rapid fielding of mission capabilities to pace threats, the suitability of commercial technologies to meet hard-real-time requirements within a surface combat system is unclear. This research establishes technical data to validate the effectiveness and suitability of current commercial technologies to meet the hard-real-time demands of a DoD combat management system. (Moreland Jr., 2013) conducted similar research; however, microservices, containers, and container orchestration technologies were not on the DoD radar at the time. Updated knowledge in this area will inform future DoD roadmaps and investments. A mission-based approach using Mission Engineering will be used to set the context for applied research. A hypothetical yet operationally relevant Strait Transit scenario has been established to provide context for definition of experimental parameters to be set while assessing the hypothesis. System models federated to form a system-of-systems architecture and data from a cloud computing environment are used to collect data for quantitative analysis

    Recent advances in industrial wireless sensor networks towards efficient management in IoT

    Get PDF
    With the accelerated development of Internet-of- Things (IoT), wireless sensor networks (WSN) are gaining importance in the continued advancement of information and communication technologies, and have been connected and integrated with Internet in vast industrial applications. However, given the fact that most wireless sensor devices are resource constrained and operate on batteries, the communication overhead and power consumption are therefore important issues for wireless sensor networks design. In order to efficiently manage these wireless sensor devices in a unified manner, the industrial authorities should be able to provide a network infrastructure supporting various WSN applications and services that facilitate the management of sensor-equipped real-world entities. This paper presents an overview of industrial ecosystem, technical architecture, industrial device management standards and our latest research activity in developing a WSN management system. The key approach to enable efficient and reliable management of WSN within such an infrastructure is a cross layer design of lightweight and cloud-based RESTful web service

    Extensible Modeling and Simulation Framework (XMSF) Opportunities for Web-Based Modeling and Simulation

    Get PDF
    Technical Opportunities Workshop Whitepaper, 14 June 2002Purpose: As the Department of Defense (DoD) is engaged in both warfighting and institutional transformation for the new millennium, DoD Modeling & Simulation (M&S) also needs to identify and adopt transformational technologies which provide direct tactical relevance to warfighters. Because the only software systems that composably scale to worldwide scope utilize the World Wide Web, it is evident that an extensible Web-based framework shows great promise to scale up the capabilities of M&S systems to meet the needs of training, analysis, acquisition, and the operational warfighter. By embracing commercial web technologies as a shared-communications platform and a ubiquitous-delivery framework, DoD M&S can fully leverage mainstream practices for enterprise-wide software development

    Screening for Real Options “In” an Engineering System: A Step Towards Flexible System Development

    Get PDF
    The goal of this research is to develop an analytical framework for screening for real options “in” an engineering system. Real options is defined in the finance literature as the right, but not the obligation, to take an action (e.g. deferring, expanding, contracting, or abandoning) at a predetermined cost and for a predetermined time. These are called "real options" because they pertain to physical or tangible assets, such as equipment, rather than financial instruments. Real options improve a system’s capability of undergoing classes of changes with relative ease. This property is often called “flexibility.” Recently, the DoD has emphasized the need to develop flexible system in order to improve operational, technical, and programmatic effectiveness. The aim of this research is to apply real options thinking to weapon acquisitions in order to promote the ability of weapon system programs to deftly avoid downside consequences or exploit upside opportunities
    • …
    corecore