48,313 research outputs found

    CYCLONE Unified Deployment and Management of Federated, Multi-Cloud Applications

    Full text link
    Various Cloud layers have to work in concert in order to manage and deploy complex multi-cloud applications, executing sophisticated workflows for Cloud resource deployment, activation, adjustment, interaction, and monitoring. While there are ample solutions for managing individual Cloud aspects (e.g. network controllers, deployment tools, and application security software), there are no well-integrated suites for managing an entire multi cloud environment with multiple providers and deployment models. This paper presents the CYCLONE architecture that integrates a number of existing solutions to create an open, unified, holistic Cloud management platform for multi-cloud applications, tailored to the needs of research organizations and SMEs. It discusses major challenges in providing a network and security infrastructure for the Intercloud and concludes with the demonstration how the architecture is implemented in a real life bioinformatics use case

    Achieving Adaptation Through Live Virtual Machine Migration in Two-Tier Clouds

    Get PDF
    This thesis presents a model-driven approach for application deployment and management in two-tier heterogeneous cloud environments. For application deployment, we introduce the architecture, the services and the domain specific language that abstract common features of multi-cloud deployments. By leveraging the architecture and the language, application deployers author a deployment model that captures the high-level structure of the application. The deployment model is then translated into deployment workflows on specific clouds. As a use case, we introduce a live VM migration framework that maintains the application quality of services through VM migrations across two tier-clouds. The proposed framework can monitor the performance of the applications and their underlying infrastructure and plan and executes VM migrations to eliminate hotspots in a datacenter. We evaluate both the application deployment architecture and the live migration on public clouds

    Self-managing cloud-native applications : design, implementation and experience

    Get PDF
    Running applications in the cloud efficiently requires much more than deploying software in virtual machines. Cloud applications have to be continuously managed: (1) to adjust their resources to the incoming load and (2) to face transient failures replicating and restarting components to provide resiliency on unreliable infrastructure. Continuous management monitors application and infrastructural metrics to provide automated and responsive reactions to failures (health management) and changing environmental conditions (auto-scaling) minimizing human intervention. In the current practice, management functionalities are provided as infrastructural or third party services. In both cases they are external to the application deployment. We claim that this approach has intrinsic limits, namely that separating management functionalities from the application prevents them from naturally scaling with the application and requires additional management code and human intervention. Moreover, using infrastructure provider services for management functionalities results in vendor lock-in effectively preventing cloud applications to adapt and run on the most effective cloud for the job. In this paper we discuss the main characteristics of cloud native applications, propose a novel architecture that enables scalable and resilient self-managing applications in the cloud, and relate on our experience in porting a legacy application to the cloud applying cloud-native principles

    The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific modeling as-a-service requires dynamic scaling of server infrastructure to adapt to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web services application which supports infrastructure provisioning and management to support scientific modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses the Amazon Elastic Compute Cloud (EC2) application programming interface to support model- service scalability, cloud management, and infrastructure configuration for supporting modeling workloads. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud from the end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a platform to improve scientific model deployment by supporting experimentation with: hot spot detection schemes, VM management and placement approaches, and model job scheduling/proxy services

    Security-as-a-Service in Multi-cloud and Federated Cloud Environments

    Get PDF
    The economic benefits of cloud computing are encouraging customers to bring complex applications and data into the cloud. However security remains the biggest barrier in the adoption of cloud, and with the advent of multi-cloud and federated clouds in practice security concerns are for applications and data in the cloud. This paper proposes security as a value added service, provisioned dynamically during deployment and operation management of an application in multi-cloud and federated clouds. This paper specifically considers a data protection and a host & application protection solution that are offered as a SaaS application, to validate the security services in a multi-cloud and federated cloud environment. This paper shares our experiences of validating these security services over a geographically distributed, large scale, multi-cloud and federated cloud infrastructure

    Roboconf: a Hybrid Cloud Orchestrator to Deploy Complex Applications

    No full text
    International audienceThis paper presents Roboconf, an open-source distributed application orchestration framework for multi-cloud platforms, designed to solve challenges of current Autonomic Computing Systems in the era of Cloud computing. It provides a Domain Specific Language (DSL) which allows to describe applications and their execution environments (cloud platforms) in a hierarchical way in order to provide a fine-grained management. Roboconf implements an asynchronous and parallel deployment protocol which accelerates and makes resilient the deployment process. Intensive experiments with different type of applications over different cloud models (e.g. private, hybrid, and multi-cloud) validate the genericity of Roboconf. These experiments also demonstrate its efficiency comparing to existing frameworks such as RightScale, Scalr, and Cloudify

    Internet of Things Cloud: Architecture and Implementation

    Full text link
    The Internet of Things (IoT), which enables common objects to be intelligent and interactive, is considered the next evolution of the Internet. Its pervasiveness and abilities to collect and analyze data which can be converted into information have motivated a plethora of IoT applications. For the successful deployment and management of these applications, cloud computing techniques are indispensable since they provide high computational capabilities as well as large storage capacity. This paper aims at providing insights about the architecture, implementation and performance of the IoT cloud. Several potential application scenarios of IoT cloud are studied, and an architecture is discussed regarding the functionality of each component. Moreover, the implementation details of the IoT cloud are presented along with the services that it offers. The main contributions of this paper lie in the combination of the Hypertext Transfer Protocol (HTTP) and Message Queuing Telemetry Transport (MQTT) servers to offer IoT services in the architecture of the IoT cloud with various techniques to guarantee high performance. Finally, experimental results are given in order to demonstrate the service capabilities of the IoT cloud under certain conditions.Comment: 19pages, 4figures, IEEE Communications Magazin

    Improving resource efficiency of container-instance clusters on clouds

    Get PDF
    Cloud computing providers such as Amazon and Google have recently begun offering container-instances, which provide an efficient route to application deployment within a lightweight, isolated and well-defined execution environment.Cloud providers currently offer Container Service Platforms (CSPs), which orchestrate containerised applications.Existing CSP frameworks do not offer any form of intelligent resource scheduling: applications are usually scheduled individually, rather than taking a holistic view of all registered applications and available resources in the cloud. This can result in increased execution times for applications, resource wastage through underutilised container-instances, and a reduction in the number of applications that can be deployed, given the available resources.The research presented in this paper aims to extend existing systems by adding a cloud-based Container Management Service (CMS) framework that offers increased deployment density, scalability and resource efficiency. CMS provides additional functionalities for orchestrating containerised applications by joint optimisation of sets of containerised applications, and resource pool in multiple (geographical distributed) cloud regions.We evaluated CMS on a cloud-based CSP i.e., Amazon EC2 Container Management Service (ECS) and conducted extensive experiments using sets of CPU and Memory intensive containerised applications against the direct deployment strategy of Amazon ECS. The results show that CMS achieves up to 25% higher cluster utilisation, and up to 70% reduction in execution times.Postprin
    corecore