6 research outputs found

    PROPOSED MIDDLEWARE SOLUTION FOR RESOURCE-CONSTRAINED DISTRIBUTED EMBEDDED NETWORKS

    Get PDF
    The explosion in processing power of embedded systems has enabled distributed embedded networks to perform more complicated tasks. Middleware are sets of encapsulations of common and network/operating system-specific functionality into generic, reusable frameworks to manage such distributed networks. This thesis will survey and categorize popular middleware implementations into three adapted layers: host-infrastructure, distribution, and common services. This thesis will then apply a quantitative approach to grading and proposing a single middleware solution from all layers for two target platforms: CubeSats and autonomous unmanned aerial vehicles (UAVs). CubeSats are 10x10x10cm nanosatellites that are popular university-level space missions, and impose power and volume constraints. Autonomous UAVs are similarly-popular hobbyist-level vehicles that exhibit similar power and volume constraints. The MAVLink middleware from the host-infrastructure layer is proposed as the middleware to manage the distributed embedded networks powering these platforms in future projects. Finally, this thesis presents a performance analysis on MAVLink managing the ARM Cortex-M 32-bit processors that power the target platforms

    In-Ear-Voice: Towards Milli-Watt Audio Enhancement With Bone-Conduction Microphones for In-Ear Sensing Platforms

    Full text link
    The recent ubiquitous adoption of remote conferencing has been accompanied by omnipresent frustration with distorted or otherwise unclear voice communication. Audio enhancement can compensate for low-quality input signals from, for example, small true wireless earbuds, by applying noise suppression techniques. Such processing relies on voice activity detection (VAD) with low latency and the added capability of discriminating the wearer's voice from others - a task of significant computational complexity. The tight energy budget of devices as small as modern earphones, however, requires any system attempting to tackle this problem to do so with minimal power and processing overhead, while not relying on speaker-specific voice samples and training due to usability concerns. This paper presents the design and implementation of a custom research platform for low-power wireless earbuds based on novel, commercial, MEMS bone-conduction microphones. Such microphones can record the wearer's speech with much greater isolation, enabling personalized voice activity detection and further audio enhancement applications. Furthermore, the paper accurately evaluates a proposed low-power personalized speech detection algorithm based on bone conduction data and a recurrent neural network running on the implemented research platform. This algorithm is compared to an approach based on traditional microphone input. The performance of the bone conduction system, achieving detection of speech within 12.8ms at an accuracy of 95\% is evaluated. Different SoC choices are contrasted, with the final implementation based on the cutting-edge Ambiq Apollo 4 Blue SoC achieving 2.64mW average power consumption at 14uJ per inference, reaching 43h of battery life on a miniature 32mAh li-ion cell and without duty cycling

    Optimisation of vibration monitoring nodes in wireless sensor networks

    Get PDF
    This PhD research focuses on developing a wireless vibration condition monitoring (CM) node which allows an optimal implementation of advanced signal processing algorithms. Obviously, such a node should meet additional yet practical requirements including high robustness and low investments in achieving predictive maintenance. There are a number of wireless protocols which can be utilised to establish a wireless sensor network (WSN). Protocols like WiFi HaLow, Bluetooth low energy (BLE), ZigBee and Thread are more suitable for long-term non-critical CM battery powered nodes as they provide inherent merits like low cost, self-organising network, and low power consumption. WirelessHART and ISA100.11a provide more reliable and robust performance but their solutions are usually more expensive, thus they are more suitable for strict industrial control applications. Distributed computation can utilise the limited bandwidth of wireless network and battery life of sensor nodes more wisely. Hence it is becoming increasingly popular in wireless CM with the fast development of electronics and wireless technologies in recent years. Therefore, distributed computation is the primary focus of this research in order to develop an advanced sensor node for realising wireless networks which allow high-performance CM at minimal network traffic and economic cost. On this basis, a ZigBee-based vibration monitoring node is designed for the evaluation of embedding signal processing algorithms. A state-of-the-art Cortex-M4F processor is employed as the core processor on the wireless sensor node, which has been optimised for implementing complex signal processing algorithms at low power consumption. Meanwhile, an envelope analysis is focused on as the main intelligent technique embedded on the node due to the envelope analysis being the most effective and general method to characterise impulsive and modulating signatures. Such signatures can commonly be found on faulty signals generated by key machinery components, such as bearings, gears, turbines, and valves. Through a preliminary optimisation in implementing envelope analysis based on fast Fourier transform (FFT), an envelope spectrum of 2048 points is successfully achieved on a processor with a memory usage of 32 kB. Experimental results show that the simulated bearing faults can be clearly identified from the calculated envelope spectrum. Meanwhile, the data throughput requirement is reduced by more than 95% in comparison with the raw data transmission. To optimise the performance of the vibration monitoring node, three main techniques have been developed and validated: 1) A new data processing scheme is developed by combining three subsequent processing techniques: down-sampling, data frame overlapping and cascading. On this basis, a frequency resolution of 0.61 Hz in the envelope spectrum is achieved on the same processor. 2) The optimal band-pass filter for envelope analysis is selected by a scheme, in which the complicated fast kurtogram is implemented on the host computer for selecting optimal band-pass filter and real-time envelope analysis on the wireless sensor for extracting bearing fault features. Moreover, a frequency band of 16 kHz is analysed, which allows features to be extracted in a wide frequency band, covering a wide category of industrial applications. 3) Two new analysis methods: short-time RMS and spectral correlation algorithms are proposed for bearing fault diagnosis. They can significantly reduce the CPU usage, being over two times less and consequently much lower power consumptio

    Applicability of the CMSIS-RTOS Standard to the Internet of Things

    No full text

    The Virtual Bus: A Network Architecture Designed to Support Modular-Redundant Distributed Periodic Real-Time Control Systems

    Get PDF
    The Virtual Bus network architecture uses physical layer switching and a combination of space- and time-division multiplexing to link segments of a partial mesh network together on schedule to temporarily form contention-free multi-hop, multi-drop simplex signalling paths, or 'virtual buses'. Network resources are scheduled and routed by a dynamic distributed resource allocation mechanism with self-forming and self-healing characteristics. Multiple virtual buses can coexist simultaneously in a single network, as the resources allocated to each bus are orthogonal in either space or time. The Virtual Bus architecture achieves deterministic delivery times for time-sensitive traffic over multi-hop partial mesh networks by employing true line-speed switching; delays of around 15ns at each switching point are demonstrated experimentally, and further reductions in switching delays are shown to be achievable. Virtual buses are inherently multicast, with delivery skew across multiple destinations proportional to the difference in equivalent physical length to each destination. The Virtual Bus architecture is not a purely theoretical concept; a small research platform has been constructed for development, testing and demonstration purposes
    corecore