21 research outputs found

    Hybrid Routing in Delay Tolerant Networks

    Get PDF
    This work addresses the integration of today\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Hybrid routing in delay tolerant networks

    Get PDF
    This work addresses the integration of today\\u27s infrastructure-based networks with infrastructure-less networks. The resulting Hybrid Routing System allows for communication over both network types and can help to overcome cost, communication, and overload problems. Mobility aspect resulting from infrastructure-less networks are analyzed and analytical models developed. For development and deployment of the Hybrid Routing System an overlay-based framework is presented

    Towards Efficient File Sharing and Packet Routing in Mobile Opportunistic Networks

    Get PDF
    With the increasing popularity of portable digital devices (e.g., smartphones, laptops, and tablets), mobile opportunistic networks (MONs) [40, 90] consisting of portable devices have attracted much attention recently. MONs are also known as pocket switched networks (PSNs) [52]. MONs can be regarded as a special form of mobile ad hoc networks (MANETs) [7] or delay tolerant networks (DTNs) [35, 56]. In such networks, mobile nodes (devices) move continuously and meet opportunistically. Two mobile nodes can communicate with each other only when they are within the communication range of each other in a peer-to-peer (P2P) manner (i.e., without the need of infrastructures). Therefore, such a network structure can potentially provide file sharing or packet routing services among portable devices without the support of network infrastructures. On the other hand, mobile opportunistic networks often experience frequent network partition, and no end-to-end contemporaneous path can be ensured in the network. These distinctive properties make traditional file sharing or packet routing algorithms in Internet or mobile networks a formidable challenge in MONs. In summary, it is essential and important to achieve efficient file sharing and packet routing algorithms in MONs, which are the key for providing practical and novel services and applications over such networks. In this Dissertation, we develop several methods to resolve the aforementioned challenges. Firstly, we propose two methods to enhance file sharing efficiency in MONs by creating replicas and by leveraging social network properties, respectively. In the first method, we investigate how to create file replicas to optimize file availability for file sharing in MONs. We introduce a new concept of resource for file replication, which considers both node storage and meeting frequency with other nodes. We theoretically study the influence of resource allocation on the average file access delay and derive a resource allocation rule to minimize the average file access delay. We also propose a distributed file replication protocol to realize the deduced optimal file replication rule. In the second method, we leverage social network properties to improve the file searching efficiency in MONs. This method groups common-interest nodes that frequently meet with each other into a community. It takes advantage of node mobility by designating stable nodes, which have the most frequent contact with community members, as community coordinators for intra-community file request forwarding, and highly-mobile nodes that visit other communities frequently as community ambassadors for inter-community file request forwarding. Based on such a community structure, an interest-oriented file searching scheme is proposed to first search local community and then search the community that is most likely to contain the requested file, leading to highly efficient file sharing in MONs. Secondly, we propose two methods to realize efficient packet routing among mobile nodes and among different landmarks in MONs, respectively. The first method utilizes distributed social map to route packets to mobile nodes efficiently with a low-cost in MONs. Each node builds its own social map consisting of nodes it has met and their frequently encountered nodes in a distributed manner. Based on both encountering frequency and social closeness of two linked nodes in the social map, we decide the weight of each link to reflect the packet delivery ability between the two nodes. The social map enables more accurate forwarder selection through a broader view and reduces the cost on information exchange. The second method realizes high-throughput packet routing among different landmarks in MONs. It selects popular places that nodes visit frequently as landmarks and divides the entire MON area into sub-areas represented by landmarks. Nodes transiting between two landmarks relay packets between the two landmarks. The frequency of node transits between two landmarks is measured to represent the forwarding capacity between them, based on which routing tables are built on each landmark to guide packet routing. Finally, packets are routed landmark by landmark to reach their destination landmarks. Extensive analysis and real-trace based experiments are conducted to support the designs in this Dissertation and demonstrate the effectiveness of the proposed methods in comparison with the state-of-art methods. In the future, we plan to further enhance the file sharing and packet routing efficiency by considering more realistic scenarios or including more useful information. We will also investigate the security and privacy issues in the proposed methods

    Video big data: an agile architecture for systematic exploration and analytics

    Get PDF
    Video is currently at the forefront of most business and natural environments. In surveillance, it is the most important technology as surveillance systems reveal information and patterns for solving many security problems including crime prevention. This research investigates technologies that currently drive video surveillance systems with a view to optimization and automated decision support. The investigation reveals some features and properties that can be optimised to improve performance and derive further benefits from surveillance systems. These aspects include system-wide architecture, meta-data generation, meta-data persistence, object identification, object tagging, object tracking, search and querying sub-systems. The current less-than-optimum performance is attributable to many factors, which include massive volume, variety, and velocity (the speed at which streaming video transmit to storage) of video data in surveillance systems. Research contributions are 2-fold. First, we propose a system-wide architecture for designing and implementing surveillance systems, based on the authors’ system architecture for generating meta-data. Secondly, we design a simulation model of a multi-view surveillance system from which the researchers generate simulated video streams in large volumes. From each video sequence in the model, the authors extract meta-data and apply a novel algorithm for predicting the location of identifiable objects across a well-connected camera cluster. This research provide evidence that independent surveillance systems (for example, security cameras) can be unified across a geographical location such as a smart city, where each network is administratively owned and managed independently. Our investigation involved 2 experiments - first, the implementation of a web-based solution where we developed a directory service for managing, cataloguing, and persisting metadata generated by the surveillance networks. The second experiment focused on the set up, configuration and the architecture of the surveillance system. These experiments involved the investigation and demonstration of 3 loosely coupled service-oriented APIs – these services provided the capability to generate the query-able metadata. The results of our investigations provided answers to our research questions - the main question being “to what degree of accuracy can we predict the location of an object in a connected surveillance network”. Our experiment also provided evidence in support of our hypothesis – “it is feasible to ‘explore’ unified surveillance data generated from independent surveillance networks”

    On social and technical aspects of managing mobile Ad-hoc communities

    Get PDF
    Soziale Software beschreibt eine Klasse von Anwendungen, die es Benutzern erlaubt ueber das Internet mit Freunden zu kommunizieren und Informationen auszutauschen. Mit zunehmender Leistungsfaehigkeit mobiler Prozessoren verwandeln sich Mobiltelefone in vollwertige Computer und eroeffnen neue Moeglichkeiten fuer die mobile Nutzung sozialer Software. Da Menschen Mobiltelefone haeufig bei sich fuehren, koennen vergleichbare mobile Anwendungen staerker auf ihre unmittelbare Umgebungssituation zugeschnitten werden. Moegliche Szenarien sind die Unterstuetzung realer Treffen und damit verbundenen Mitgliederinteraktionen. Client-Server-Plattformen, die dabei haeufig zum Einsatz kommen wurden allerdings nie fuer solche hochflexiblen Gruppensituationen konstruiert. Mobile Encounter Netzwerke (MENe) verprechen hier mehr Flexibilitaet. Ein MEN stellt eine mobiler Peer-to-Peer-Plattformen dar, das ueber ein kurzreichweitiges Funknetz betrieben wird. Mit diesem Netzwerk werden Beitraege ueber einen raeumlichen Diffusionsprozess von einem mobilen Endgeraet zum naechsten verbreitet. Das hat zwei entscheidende Vorteile: Zunaechst ist der direkte Nachrichtenaustausch besser geeignet zur Verbreitung von situationsspezifischer Information, da die Informationsrelevanz mit ihrer Entfehrnung abnimmt. Gleichzeitig koennen aber auch Inhalte, die fuer einen breiten Interessenkreis bestimmt sind ueber Mitglieder mit herausragenden Mobilitaetscharakteristik in weit entfernte Gebiete transportiert werden. Ein Nachteil ist jedoch der hohe Ressourcenverbrauch. Zur Loesung dieses Problems entwickeln wir ein Rahmenwerk zur Unterstuetzung mobiler ad-hoc Gruppen, das es uns erlaubt, Gruppensynergien gezielt auszunutzen. Dieses Rahmenwerk bietet Dienstleistungen zur Verwaltung der Gruppendynamik und zur Verbreitung von Inhalten an. Mittels soziale Netzwerkanalyse wird die technische Infrastruktur ohne notwendige Benutzereingriffe kontinuierlich an die reale Umgebungssituation angepasst. Dabei werden moegliche Beziehungen zwischen benachbarten Personen anhand frueher Begegnungen analysiert, spontane Gruppenbildungen mit Clusterverfahren identifiziert und jedem Gruppenmitglied eine geeignete Rolle durch eine Positionsanalyse zugewiesen. Eine Grundvorraussetzung fuer eine erfolgreiche Kooperation ist ein effizienter Wissensaustausch innerhalb einer Gemeinschaft. Wie die Small World-Theorie zeigt, koennen Menschen Wissen auch dann effizient verbreiten, wenn ihre Entscheidung nur auf lokaler Umgebungsinformation basiert. Verschiedene Forscher machten sich das zu nutze, indem sie kurze Verbreitungspfade durch eine Verkettung hochvernetzter Mitglieder innerhalb einer Gemeinschaft konstruierten. Allerdings laesst sich dieses Verfahren nicht einfach auf MENe uebertragen, da die Transferzeit im Gegensatz zu dem drahtgebundenen Internet beschraenkt ist. Unser Ansatz beruht daher, auf der von Reagan et al. vorgestellten Least Effort Transfer-Hypothese. Diese Hypothese besagt, dass Menschen Wissen nur dann weitergeben, wenn sich der Aufwand zur Informationsuebertragung innerhalb bestimmter Grenzen bewegt. Eine erfolgreiche Wissensuebertragung haengt in diesem Fall vom Hintergrundwissen aller Beteiligter ab, was wiederum von unterschiedlichen kognitiven und sozialen Faktoren abhaengt. Entsprechend leiten wir ein Diffusionsverfahren ab, dass in der Lage ist, Inhalte in verschiedene Kompexitaetstufen einzuteilen und Datenuebertragungen an die vorgefundene soziale Situation anzupassen. Mit einem Prototyp evaluieren wir die Machbarkeit der Gruppen- und Informationsmanagementkomponente unseres Rahmenwerkes. Da Laborexperimente keinen ausreichenden Aufschluss ueber Diffusionseigenschaften im groesseren Massstab geben koennen, simulieren wir die Beitragsdiffusion. Dazu dient uns eine Verkehrsimulation, bei der Agenten zusaetzlich mit aktivitaetsbezogenen, sozialen und territorialen Modellen erweitern werden. Um eine realitaetsnahe Simulation zu gewaehrleisten, werden diese Modelle in Uebereinstimmung mit verschiedenen Studien zum Stadtleben generiert. Der technische Uebertragungsprozess wird anhand der Ergebnisse einer vorangegangenen Prototypuntersuchung parametrisiert. Waehrend eines Simulationslaufes bewegen sich Agenten auf einem Stadtplan und sammeln Kontakt- und Beitragsdaten. Analysiert man anschliessend die Netzwerktopologie auf Small World-Eigenschaften, so findet man eine Netzstruktur mit einer ausgepraegten Neigung zum Clustering (Freundschaftsnetzwerke) und einer ueberdurschnittlichen kurzen Weglaenge. Offensichtlich reicht die Alltagsmobilitaet aus, um ausreichend viele Verknuepfungen zwischen Gemeinschaftmitgliedern zu bilden. Die nachfolgende Diffusionsanalyse zeigt, dass vergleichbare Reichweiten wie bei einem flutungsbasierten Ansatz erzielt werden, allerdings mit anfaenglichen Verzoegerungen. Da unser Verfahren bei einem Ortswechsel die Anzahl der Informationsuebermittler auf zentrale Gruppenmitglieder begrenzt, steht mehr Bandbreite fuer den Datenaustausch zur Verfuegung. Herkoemliche Mitglieder (ohne Leitungsaufgaben) tauschen Inhalte vornehmlich in zeitunkritschen Situationen aus. Das hat den positiven Nebeneffekt, dass im Cache erheblich weniger Kopien aussortiert werden muessen. Wechselt man waehrend der Simulation die Beitragskategorie so erkennt man, dass zeitabhaengige Inhalte besser ueber regelmaessige Kontakte und zeitunabhaengig Inhalte durch zufaellige Kontakte verbreitet werden. Eine abschliessende Precision-Recall Analyse zeigt, dass herkoemmliche Gruppenmitglieder eine bessere Genauigkeit (Precision), und zentrale Mitglieder eine bessere Trefferquote (Recall) im Vergleich zu traditionellen Ansaetzen besitzen. Eine Erklaerung dafuer ist, dass der von uns gewaehlte gruppenbasierte Cacheansatz zu weniger Saeuberungszyklen aller Gruppenmitglieder fuehrt und somit nachhaltiger ausgerichtet ist.Social software encompasses a range of software systems that allow users to interact and share data. This computer-mediated communication has become very popular with social networking sites like Facebook and Twitter. The evolvement of smart phones toward mobile computers opens new possibilities to use social software also in mobile usage scenarios. Since mobile phones are permanently carried by their owners, the support focus is, however, much stronger set on promoting and augmenting real group gatherings. Traditional client-server platforms are not flexible enough to support complex and dynamic human encounter behavior. Mobile encounter networks (MENs) which represent a mobile peer-to-peer platform on top of a short range wireless network promise better flexibility. MENs diffuse content from neighbor-to-neighbor in a spatial diffusion process. For physical group gatherings this is advantageous for two reasons. Direct device-to-device interactions encourage sharing of situation-dependent content. Moreover, content is not necessarily locked within friend groups and may trigger networking effects by reaching larger audiences through user mobility. One disadvantage is, however, the high resource usage. We develop a social software framework for mobile ad-hoc groups, which partly solves this problem. This framework supports services for the management of group dynamics and content diffusion within and between groups. Social network analysis as an inherent part of the framework is used to adapt internal community states continuously with real world encounter situations. We hereby qualify interpersonal relationships based on encounter and communication statistics, identify social groups through incremental clustering and assign diffusion roles through position analysis. To achieve efficient content dissemination we make use of social diffusion phenomena. Other researchers have experimented extensively with the small world model as it proofs that people transfer knowledge based on local knowledge but are still capable of diffusing it efficiently on a global scale. Their approach is often based on identifying short paths through member connectivity. However, this scenario is not applicable in MENs as transfer time is limited in contrast to the wired Internet. Our approach is therefore based on the least effort transfer theory. Following Reagan et al., who first postulated this hypothesis, people transfer knowledge only if the transfer effort is within specific limits, which depends on different social and cognitive factors. We derive routing mechanisms, which are capable of distinguishing between different content complexities and apply information about peer's expertise and social network to identify advantageous paths and content transfers options. We evaluate the feasibility of the group management and content transfer component with prototypes. Since labor settings do not allow to obtain information about large scale diffusion experiences, we also conduct a multi-agent simulation to evaluate the diffusion capabilities of the system. Experiences from an earlier prototype implementation have been used to quantify the technical routing process. To emulate realistic community life, we assigned to each agent an individual daily agenda, social contacts and territory preferences specified according to outcomes from different urban city life surveys. During the simulation agents move on a city map according to these models and collect contact and content specific data. Analyzing the network topology according to small world characteristics shows a structure with a high tendency for clustering (friend networks) and a short average path length. Daily urban mobility creates enough opportunities to form shortcuts through the community. Content diffusion analysis shows that our approach reaches a similar amount of peers as network flooding but with delays in the beginning. Since our approach artificially limits the number of intermediates to central community peers more bandwidth is available during traveling and more content can be transferred as in the case of the flooding approach. Ordinary peers seem to have significantly fewer content replications if an unlimited cache is assumed proofing that our mechanism is more efficient. By varying the content type used during the simulation we recognize that time dependent content is better disseminated through frequent contacts and time independent content through random contacts. Performing a precision-recall analysis on peers caches shows that ordinary peers gain an overall better context precision, and central peers a better community recall. One explanation is that the shared cache approach leads to fewer content replacements in the cache as for instance the least recently used cache strategy

    Dynamic services in mobile ad hoc networks

    Get PDF
    The increasing diffusion of wireless-enabled portable devices is pushing toward the design of novel service scenarios, promoting temporary and opportunistic interactions in infrastructure-less environments. Mobile Ad Hoc Networks (MANET) are the general model of these higly dynamic networks that can be specialized, depending on application cases, in more specific and refined models such as Vehicular Ad Hoc Networks and Wireless Sensor Networks. Two interesting deployment cases are of increasing relevance: resource diffusion among users equipped with portable devices, such as laptops, smart phones or PDAs in crowded areas (termed dense MANET) and dissemination/indexing of monitoring information collected in Vehicular Sensor Networks. The extreme dynamicity of these scenarios calls for novel distributed protocols and services facilitating application development. To this aim we have designed middleware solutions supporting these challenging tasks. REDMAN manages, retrieves, and disseminates replicas of software resources in dense MANET; it implements novel lightweight protocols to maintain a desired replication degree despite participants mobility, and efficiently perform resource retrieval. REDMAN exploits the high-density assumption to achieve scalability and limited network overhead. Sensed data gathering and distributed indexing in Vehicular Networks raise similar issues: we propose a specific middleware support, called MobEyes, exploiting node mobility to opportunistically diffuse data summaries among neighbor vehicles. MobEyes creates a low-cost opportunistic distributed index to query the distributed storage and to determine the location of needed information. Extensive validation and testing of REDMAN and MobEyes prove the effectiveness of our original solutions in limiting communication overhead while maintaining the required accuracy of replication degree and indexing completeness, and demonstrates the feasibility of the middleware approach

    Analysis and design of security mechanisms in the context of Advanced Persistent Threats against critical infrastructures

    Get PDF
    Industry 4.0 can be defined as the digitization of all components within the industry, by combining productive processes with leading information and communication technologies. Whereas this integration has several benefits, it has also facilitated the emergence of several attack vectors. These can be leveraged to perpetrate sophisticated attacks such as an Advanced Persistent Threat (APT), that ultimately disrupts and damages critical infrastructural operations with a severe impact. This doctoral thesis aims to study and design security mechanisms capable of detecting and tracing APTs to ensure the continuity of the production line. Although the basic tools to detect individual attack vectors of an APT have already been developed, it is important to integrate holistic defense solutions in existing critical infrastructures that are capable of addressing all potential threats. Additionally, it is necessary to prospectively analyze the requirements that these systems have to satisfy after the integration of novel services in the upcoming years. To fulfill these goals, we define a framework for the detection and traceability of APTs in Industry 4.0, which is aimed to fill the gap between classic security mechanisms and APTs. The premise is to retrieve data about the production chain at all levels to correlate events in a distributed way, enabling the traceability of an APT throughout its entire life cycle. Ultimately, these mechanisms make it possible to holistically detect and anticipate attacks in a timely and autonomous way, to deter the propagation and minimize their impact. As a means to validate this framework, we propose some correlation algorithms that implement it (such as the Opinion Dynamics solution) and carry out different experiments that compare the accuracy of response techniques that take advantage of these traceability features. Similarly, we conduct a study on the feasibility of these detection systems in various Industry 4.0 scenarios

    WSN based sensing model for smart crowd movement with identification: a conceptual model

    Get PDF
    With the advancement of IT and increase in world population rate, Crowd Management (CM) has become a subject undergoing intense study among researchers. Technology provides fast and easily available means of transport and, up-to-date information access to the people that causes crowd at public places. This imposes a big challenge for crowd safety and security at public places such as airports, railway stations and check points. For example, the crowd of pilgrims during Hajj and Ummrah while crossing the borders of Makkah, Kingdom of Saudi Arabia. To minimize the risk of such crowd safety and security identification and verification of people is necessary which causes unwanted increment in processing time. It is observed that managing crowd during specific time period (Hajj and Ummrah) with identification and verification is a challenge. At present, many advanced technologies such as Internet of Things (IoT) are being used to solve the crowed management problem with minimal processing time. In this paper, we have presented a Wireless Sensor Network (WSN) based conceptual model for smart crowd movement with minimal processing time for people identification. This handles the crowd by forming groups and provides proactive support to handle them in organized manner. As a result, crowd can be managed to move safely from one place to another with group identification. The group identification minimizes the processing time and move the crowd in smart way
    corecore