21,825 research outputs found

    textTOvec: Deep Contextualized Neural Autoregressive Topic Models of Language with Distributed Compositional Prior

    Full text link
    We address two challenges of probabilistic topic modelling in order to better estimate the probability of a word in a given context, i.e., P(word|context): (1) No Language Structure in Context: Probabilistic topic models ignore word order by summarizing a given context as a "bag-of-word" and consequently the semantics of words in the context is lost. The LSTM-LM learns a vector-space representation of each word by accounting for word order in local collocation patterns and models complex characteristics of language (e.g., syntax and semantics), while the TM simultaneously learns a latent representation from the entire document and discovers the underlying thematic structure. We unite two complementary paradigms of learning the meaning of word occurrences by combining a TM (e.g., DocNADE) and a LM in a unified probabilistic framework, named as ctx-DocNADE. (2) Limited Context and/or Smaller training corpus of documents: In settings with a small number of word occurrences (i.e., lack of context) in short text or data sparsity in a corpus of few documents, the application of TMs is challenging. We address this challenge by incorporating external knowledge into neural autoregressive topic models via a language modelling approach: we use word embeddings as input of a LSTM-LM with the aim to improve the word-topic mapping on a smaller and/or short-text corpus. The proposed DocNADE extension is named as ctx-DocNADEe. We present novel neural autoregressive topic model variants coupled with neural LMs and embeddings priors that consistently outperform state-of-the-art generative TMs in terms of generalization (perplexity), interpretability (topic coherence) and applicability (retrieval and classification) over 6 long-text and 8 short-text datasets from diverse domains.Comment: Published in #ICLR2019 International Conference on Learning Representation

    Robust Spatial Filtering with Graph Convolutional Neural Networks

    Full text link
    Convolutional Neural Networks (CNNs) have recently led to incredible breakthroughs on a variety of pattern recognition problems. Banks of finite impulse response filters are learned on a hierarchy of layers, each contributing more abstract information than the previous layer. The simplicity and elegance of the convolutional filtering process makes them perfect for structured problems such as image, video, or voice, where vertices are homogeneous in the sense of number, location, and strength of neighbors. The vast majority of classification problems, for example in the pharmaceutical, homeland security, and financial domains are unstructured. As these problems are formulated into unstructured graphs, the heterogeneity of these problems, such as number of vertices, number of connections per vertex, and edge strength, cannot be tackled with standard convolutional techniques. We propose a novel neural learning framework that is capable of handling both homogeneous and heterogeneous data, while retaining the benefits of traditional CNN successes. Recently, researchers have proposed variations of CNNs that can handle graph data. In an effort to create learnable filter banks of graphs, these methods either induce constraints on the data or require preprocessing. As opposed to spectral methods, our framework, which we term Graph-CNNs, defines filters as polynomials of functions of the graph adjacency matrix. Graph-CNNs can handle both heterogeneous and homogeneous graph data, including graphs having entirely different vertex or edge sets. We perform experiments to validate the applicability of Graph-CNNs to a variety of structured and unstructured classification problems and demonstrate state-of-the-art results on document and molecule classification problems

    Efficient Gender Classification Using a Deep LDA-Pruned Net

    Full text link
    Many real-time tasks, such as human-computer interaction, require fast and efficient facial gender classification. Although deep CNN nets have been very effective for a multitude of classification tasks, their high space and time demands make them impractical for personal computers and mobile devices without a powerful GPU. In this paper, we develop a 16-layer, yet lightweight, neural network which boosts efficiency while maintaining high accuracy. Our net is pruned from the VGG-16 model starting from the last convolutional (conv) layer where we find neuron activations are highly uncorrelated given the gender. Through Fisher's Linear Discriminant Analysis (LDA), we show that this high decorrelation makes it safe to discard directly last conv layer neurons with high within-class variance and low between-class variance. Combined with either Support Vector Machines (SVM) or Bayesian classification, the reduced CNNs are capable of achieving comparable (or even higher) accuracies on the LFW and CelebA datasets than the original net with fully connected layers. On LFW, only four Conv5_3 neurons are able to maintain a comparably high recognition accuracy, which results in a reduction of total network size by a factor of 70X with a 11 fold speedup. Comparisons with a state-of-the-art pruning method as well as two smaller nets in terms of accuracy loss and convolutional layers pruning rate are also provided.Comment: The only difference with the previous version v2 is the title on the arxiv page. I am changing it back to the original title in v1 because otherwise google scholar cannot track the citations to this arxiv paper correctly. You could cite either the conference version or this arxiv version. They are equivalen

    BranchConnect: Large-Scale Visual Recognition with Learned Branch Connections

    Full text link
    We introduce an architecture for large-scale image categorization that enables the end-to-end learning of separate visual features for the different classes to distinguish. The proposed model consists of a deep CNN shaped like a tree. The stem of the tree includes a sequence of convolutional layers common to all classes. The stem then splits into multiple branches implementing parallel feature extractors, which are ultimately connected to the final classification layer via learned gated connections. These learned gates determine for each individual class the subset of features to use. Such a scheme naturally encourages the learning of a heterogeneous set of specialized features through the separate branches and it allows each class to use the subset of features that are optimal for its recognition. We show the generality of our proposed method by reshaping several popular CNNs from the literature into our proposed architecture. Our experiments on the CIFAR100, CIFAR10, and Synth datasets show that in each case our resulting model yields a substantial improvement in accuracy over the original CNN. Our empirical analysis also suggests that our scheme acts as a form of beneficial regularization improving generalization performance.Comment: WACV 201

    DecomposeMe: Simplifying ConvNets for End-to-End Learning

    Full text link
    Deep learning and convolutional neural networks (ConvNets) have been successfully applied to most relevant tasks in the computer vision community. However, these networks are computationally demanding and not suitable for embedded devices where memory and time consumption are relevant. In this paper, we propose DecomposeMe, a simple but effective technique to learn features using 1D convolutions. The proposed architecture enables both simplicity and filter sharing leading to increased learning capacity. A comprehensive set of large-scale experiments on ImageNet and Places2 demonstrates the ability of our method to improve performance while significantly reducing the number of parameters required. Notably, on Places2, we obtain an improvement in relative top-1 classification accuracy of 7.7\% with an architecture that requires 92% fewer parameters compared to VGG-B. The proposed network is also demonstrated to generalize to other tasks by converting existing networks

    p-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning

    Full text link
    Recent advances in learning Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art classifiers across a wide range of applications, with little or no feature engineering. In this paper, we broadly study the applicability of deep learning to website fingerprinting. We show that unsupervised DNNs can be used to extract low-dimensional feature vectors that improve the performance of state-of-the-art website fingerprinting attacks. When used as classifiers, we show that they can match or exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we show that DNNs can be used to predict the fingerprintability of a website based on its contents, achieving 99% accuracy on a data set of 4500 website downloads.Comment: Under submissio

    Scale-Adaptive Neural Dense Features: Learning via Hierarchical Context Aggregation

    Get PDF
    How do computers and intelligent agents view the world around them? Feature extraction and representation constitutes one the basic building blocks towards answering this question. Traditionally, this has been done with carefully engineered hand-crafted techniques such as HOG, SIFT or ORB. However, there is no ``one size fits all'' approach that satisfies all requirements. In recent years, the rising popularity of deep learning has resulted in a myriad of end-to-end solutions to many computer vision problems. These approaches, while successful, tend to lack scalability and can't easily exploit information learned by other systems. Instead, we propose SAND features, a dedicated deep learning solution to feature extraction capable of providing hierarchical context information. This is achieved by employing sparse relative labels indicating relationships of similarity/dissimilarity between image locations. The nature of these labels results in an almost infinite set of dissimilar examples to choose from. We demonstrate how the selection of negative examples during training can be used to modify the feature space and vary it's properties. To demonstrate the generality of this approach, we apply the proposed features to a multitude of tasks, each requiring different properties. This includes disparity estimation, semantic segmentation, self-localisation and SLAM. In all cases, we show how incorporating SAND features results in better or comparable results to the baseline, whilst requiring little to no additional training. Code can be found at: https://github.com/jspenmar/SAND_featuresComment: CVPR201

    Surface Defect Classification in Real-Time Using Convolutional Neural Networks

    Full text link
    Surface inspection systems are an important application domain for computer vision, as they are used for defect detection and classification in the manufacturing industry. Existing systems use hand-crafted features which require extensive domain knowledge to create. Even though Convolutional neural networks (CNNs) have proven successful in many large-scale challenges, industrial inspection systems have yet barely realized their potential due to two significant challenges: real-time processing speed requirements and specialized narrow domain-specific datasets which are sometimes limited in size. In this paper, we propose CNN models that are specifically designed to handle capacity and real-time speed requirements of surface inspection systems. To train and evaluate our network models, we created a surface image dataset containing more than 22000 labeled images with many types of surface materials and achieved 98.0% accuracy in binary defect classification. To solve the class imbalance problem in our datasets, we introduce neural data augmentation methods which are also applicable to similar domains that suffer from the same problem. Our results show that deep learning based methods are feasible to be used in surface inspection systems and outperform traditional methods in accuracy and inference time by considerable margins.Comment: Supplementary material will follo

    Automated Website Fingerprinting through Deep Learning

    Full text link
    Several studies have shown that the network traffic that is generated by a visit to a website over Tor reveals information specific to the website through the timing and sizes of network packets. By capturing traffic traces between users and their Tor entry guard, a network eavesdropper can leverage this meta-data to reveal which website Tor users are visiting. The success of such attacks heavily depends on the particular set of traffic features that are used to construct the fingerprint. Typically, these features are manually engineered and, as such, any change introduced to the Tor network can render these carefully constructed features ineffective. In this paper, we show that an adversary can automate the feature engineering process, and thus automatically deanonymize Tor traffic by applying our novel method based on deep learning. We collect a dataset comprised of more than three million network traces, which is the largest dataset of web traffic ever used for website fingerprinting, and find that the performance achieved by our deep learning approaches is comparable to known methods which include various research efforts spanning over multiple years. The obtained success rate exceeds 96% for a closed world of 100 websites and 94% for our biggest closed world of 900 classes. In our open world evaluation, the most performant deep learning model is 2% more accurate than the state-of-the-art attack. Furthermore, we show that the implicit features automatically learned by our approach are far more resilient to dynamic changes of web content over time. We conclude that the ability to automatically construct the most relevant traffic features and perform accurate traffic recognition makes our deep learning based approach an efficient, flexible and robust technique for website fingerprinting.Comment: To appear in the 25th Symposium on Network and Distributed System Security (NDSS 2018

    Accurate Tissue Interface Segmentation via Adversarial Pre-Segmentation of Anterior Segment OCT Images

    Full text link
    Optical Coherence Tomography (OCT) is an imaging modality that has been widely adopted for visualizing corneal, retinal and limbal tissue structure with micron resolution. It can be used to diagnose pathological conditions of the eye, and for developing pre-operative surgical plans. In contrast to the posterior retina, imaging the anterior tissue structures, such as the limbus and cornea, results in B-scans that exhibit increased speckle noise patterns and imaging artifacts. These artifacts, such as shadowing and specularity, pose a challenge during the analysis of the acquired volumes as they substantially obfuscate the location of tissue interfaces. To deal with the artifacts and speckle noise patterns and accurately segment the shallowest tissue interface, we propose a cascaded neural network framework, which comprises of a conditional Generative Adversarial Network (cGAN) and a Tissue Interface Segmentation Network (TISN). The cGAN pre-segments OCT B-scans by removing undesired specular artifacts and speckle noise patterns just above the shallowest tissue interface, and the TISN combines the original OCT image with the pre-segmentation to segment the shallowest interface. We show the applicability of the cascaded framework to corneal datasets, demonstrate that it precisely segments the shallowest corneal interface, and also show its generalization capacity to limbal datasets. We also propose a hybrid framework, wherein the cGAN pre-segmentation is passed to a traditional image analysis-based segmentation algorithm, and describe the improved segmentation performance. To the best of our knowledge, this is the first approach to remove severe specular artifacts and speckle noise patterns (prior to the shallowest interface) that affects the interpretation of anterior segment OCT datasets, thereby resulting in the accurate segmentation of the shallowest tissue interface.Comment: First two authors contributed equally. Biomedical Optics Express journal submission. 27 pages, 15 figures. Submitted to the journal on May 6th 2019 at 11:38p
    • …
    corecore