620 research outputs found

    Smart Service Innovation: Organization, Design, and Assessment

    Get PDF
    Background: The emergence of technologies such as the Internet of Things, big data, cloud computing, and wireless communication drives the digital transformation of the entire society. Organizations can exploit these potentials by offering new data-driven services with innovative value propositions, such as carsharing, remote equipment maintenance, and energy management services. These services result from value co-creation enabled by smart service systems, which are configurations of people, processes, and digital technologies. However, developing such systems was found to be challenging in practice. This is mainly due to the difficulties of managing complexity and uncertainty in the innovation process, as contributions of various actors from multiple disciplines must be coordinated. Previous research in service innovation and service systems engineering (SSE) has not shed sufficient light on the specifics of smart services, while research on smart service systems lacks empirical grounding. Purpose: This thesis aims to advance the understanding of the systematic development of smart services in multi-actor settings by investigating how smart service innovation (SSI) is conducted in practice, particularly regarding the participating actors, roles they assume, and methods they apply for designing smart service systems. Furthermore, the existing set of methods is extended by new methods for the design-integrated assessment of smart services and service business models. Approach: Empirical and design science methods were combined to address the research questions. To explore how SSI is conducted in practice, 25 interviews with experts from 13 organizations were conducted in two rounds. Building on service-dominant logic (SDL) as a theoretical foundation and a multi-level framework for SSI, the involvement of actors, their activities, employed means, and experienced challenges were collected. Additionally, a case study was used to evaluate the suitability of the Lifecycle Modelling Language to describe smart service systems. Design science methods were applied to determine a useful combination of service design methods and to build meta-models and tools for assessing smart services. They were evaluated using experiments and the talk aloud method. Results: On the macro-level, service ecosystems consist of various actors that conduct service innovation through the reconfiguration of resources. Collaboration of these actors is facilitated on the meso-level within a project. The structure and dynamics of project configurations can be described through a set of roles, innovation patterns, and ecosystem states. Four main activities have been identified, which actors perform to reduce uncertainty in the project. To guide their work, actors apply a variety of means from different disciplines to develop and document work products. The approach of design-integrated business model assessment is enabled through a meta-model that links qualitative aspects of service architectures and business models with quantitative assessment information. The evaluation of two tool prototypes showed the feasibility and benefit of this approach. Originality / Value: The results reported in this thesis advance the understanding of smart service innovation. They contribute to evidence-based knowledge on service systems engineering and its embedding in service ecosystems. Specifically, the consideration of actors, roles, activities, and methods can enhance existing reference process models. Furthermore, the support of activities in such processes through suitable methods can stimulate discussions on how methods from different disciplines can be applied and combined for developing the various aspects of smart service systems. The underlying results help practitioners to better organize and conduct SSI projects. As potential roles in a service ecosystem depend on organizational capabilities, the presented results can support the analysis of ex¬ternal dependencies and develop strategies for building up internal competencies.:Abstract iii Content Overview iv List of Abbreviations viii List of Tables x List of Figures xii PART A - SYNOPSIS 1 1 Introduction 2 1.1 Motivation 2 1.2 Research Objectives and Research Questions 4 1.3 Thesis Structure 6 2 Research Background 7 2.1 Smart Service Systems 7 2.2 Service-Dominant Logic 8 2.3 Service Innovation in Ecosystems 11 2.4 Systematic Development of Smart Service Systems 13 3 Research Approach 21 3.1 Research Strategy 21 3.2 Applied Research Methods 22 4 Summary of Findings 26 4.1 Overview of Research Results 26 4.2 Organizational Setup of Multi-Actor Smart Service Innovation 27 4.3 Conducting Smart Service Innovation Projects 32 4.4 Approaches for the Design-integrated Assessment of Smart Services 39 5 Discussion 44 5.1 Contributions 44 5.2 Limitations 46 5.3 Managerial Implications 47 5.4 Directions for Future Research 48 6 Conclusion 54 References 55 PART B - PUBLICATIONS 68 7 It Takes More than Two to Tango: Identifying Roles and Patterns in Multi-Actor Smart Service Innovation 69 7.1 Introduction 69 7.2 Research Background 72 7.3 Methodology 76 7.4 Results 79 7.5 Discussion 90 7.6 Conclusions and Outlook 96 7.7 References 97 8 Iterative Uncertainty Reduction in Multi-Actor Smart Service Innovation 100 8.1 Introduction 100 8.2 Research Background 103 8.3 Research Approach 109 8.4 Findings 113 8.5 Discussion 127 8.6 Conclusions and Outlook 131 8.7 References 133 9 How to Tame the Tiger – Exploring the Means, Ends, and Challenges in Smart Service Systems Engineering 139 9.1 Introduction 139 9.2 Research Background 140 9.3 Methodology 143 9.4 Results 145 9.5 Discussion and Conclusions 151 9.6 References 153 10 Combining Methods for the Design of Digital Services in Practice: Experiences from a Predictive Costing Service 156 10.1 Introduction 156 10.2 Conceptual Foundation 157 10.3 Preparing the Action Design Research Project 158 10.4 Application and Evaluation of Methods 160 10.5 Discussion and Formalization of Learning 167 10.6 Conclusion 169 10.7 References 170 11 Modelling of a Smart Service for Consumables Replenishment: A Life Cycle Perspective 171 11.1 Introduction 171 11.2 Life Cycles of Smart Services 173 11.3 Case Study 178 11.4 Discussion of the Modelling Approach 185 11.5 Conclusion and Outlook 187 11.6 References 188 12 Design-integrated Financial Assessment of Smart Services 192 12.1 Introduction 192 12.2 Problem Analysis 195 12.3 Meta-Model Design 200 12.4 Application of the Meta-Model in a Tool Prototype 204 12.5 Evaluation 206 12.6 Discussion 208 12.7 Conclusions 209 12.8 References 211 13 Towards a Cost-Benefit-Analysis of Data-Driven Business Models 215 13.1 Introduction 215 13.2 Conceptual Foundation 216 13.3 Methodology 218 13.4 Case Analysis 220 13.5 A Cost-Benefit-Analysis Model for DDBM 222 13.6 Conclusion and Outlook 225 13.7 References 226 14 Enabling Design-integrated Assessment of Service Business Models Through Factor Refinement 228 14.1 Introduction 228 14.2 Related Work 229 14.3 Research Goal and Method 230 14.4 Solution Design 231 14.5 Demonstration 234 14.6 Discussion 235 14.7 Conclusion 236 14.8 References 23

    Advances in Production Management Systems: Issues, Trends, and Vision Towards 2030

    Get PDF
    Since its inception in 1978, the IFIP Working Group (WG) 5.7 on Advances in Production Management Systems (APMS) has played an active role in the fields of production and production management. The Working Group has focused on the conception, development, strategies, frameworks, architectures, processes, methods, and tools needed for the advancement of both fields. The associated standards created by the IFIP WG5.7 have always been impacted by the latest developments of scientific rigour, academic research, and industrial practices. The most recent of those developments involves the Fourth Industrial Revolution, which is having remarkable (r)evolutionary and disruptive changes in both the fields and the standards. These changes are triggered by the fusion of advanced operational and informational technologies, innovative operating and business models, as well as social and environmental pressures for more sustainable production systems. This chapter reviews past, current, and future issues and trends to establish a coherent vision and research agenda for the IFIP WG5.7 and its international community. The chapter covers a wide range of production aspects and resources required to design, engineer, and manage the next generation of sustainable and smart production systems.acceptedVersio

    Recombinant Service System Engineering

    Get PDF
    Although many methods have been proposed for engineering services and customer solutions, most of these approaches give little consideration to recombinant service innovation. In an age of smart products and smart data, we can, however, expect that many of future service innovations need to be based on adding, transferring, dissociating, and associating existing value propositions. The purpose of this paper is to outline what properties constitute recombinant service innovation and to identify if current service engineering approaches fulfill these properties. Based on a conceptual in-depth analysis of 24 service engineering methods, we identify that most methods focus on designing value propositions instead of service systems, view service independent of physical goods, are linear or iterative, and incompletely address the mechanisms of recombinant innovation. We discuss how these deficiencies can be remedied and propose a first conceptual model of a revised service system engineering approach

    The Digital Transformation of Automotive Businesses: THREE ARTEFACTS TO SUPPORT DIGITAL SERVICE PROVISION AND INNOVATION

    Get PDF
    Digitalisation and increasing competitive pressure drive original equipment manufacturers (OEMs) to switch their focus towards the provision of digital services and open-up towards increased collaboration and customer integration. This shift implies a significant transformational change from product to product-service providers, where OEMs realign themselves within strategic, business and procedural dimensions. Thus, OEMs must manage digital transformation (DT) processes in order to stay competitive and remain adaptable to changing customer demands. However, OEMs aspiring to become participants or leaders in their domain, struggle to initiate activities as there is a lack of applicable instruments that can guide and support them during this process. Compared to the practical importance of DT, empirical studies are not comprehensive. This study proposes three artefacts, validated within case companies that intend to support automotive OEMs in digital service provisioning. Artefact one, a layered conceptual model for a digital automotive ecosystem, was developed by means of 26 expert interviews. It can serve as a useful instrument for decision makers to strategically plan and outline digital ecosystems. Artefact two is a conceptual reference framework for automotive service systems. The artefact was developed based on an extensive literature review, and the mapping of the business model canvas to the service system domain. The artefact intends to assist OEMs in the efficient conception of digital services under consideration of relevant stakeholders and the necessary infrastructures. Finally, artefact three proposes a methodology by which to transform software readiness assessment processes to fit into the agile software development approach with consideration of the existing operational infrastructure. Overall, the findings contribute to the empirical body of knowledge about the digital transformation of manufacturing industries. The results suggest value creation for digital automotive services occurs in networks among interdependent stakeholders in which customers play an integral role during the services’ life-cycle. The findings further indicate the artefacts as being useful instruments, however, success is dependent on the integration and collaboration of all contributing departments.:Table of Contents Bibliographic Description II Acknowledgment III Table of Contents IV List of Figures VI List of Tables VII List of Abbreviations VIII 1 Introduction 1 1.1 Motivation and Problem Statement 1 1.2 Objective and Research Questions 6 1.3 Research Methodology 7 1.4 Contributions 10 1.5 Outline 12 2 Background 13 2.1 From Interdependent Value Creation to Digital Ecosystems 13 2.1.1 Digitalisation Drives Collaboration 13 2.1.2 Pursuing an Ecosystem Strategy 13 2.1.3 Research Gaps and Strategy Formulation Obstacles 20 2.2 From Products to Product-Service Solutions 22 2.2.1 Digital Service Fulfilment Requires Co-Creational Networks 22 2.2.2 Enhancing Business Models with Digital Services 28 2.2.3 Research Gaps and Service Conception Obstacles 30 2.3 From Linear Development to Continuous Innovation 32 2.3.1 Digital Innovation Demands Digital Transformation 32 2.3.2 Assessing Digital Products 36 2.3.3 Research Gaps and Implementation Obstacles 38 3 Artefact 1: Digital Automotive Ecosystems 41 3.1 Meta Data 41 3.2 Summary 42 3.3 Designing a Layered Conceptual Model of a Digital Ecosystem 45 4 Artefact 2: Conceptual Reference Framework 79 4.1 Meta Data 79 4.2 Summary 80 4.3 On the Move Towards Customer-Centric Automotive Business Models 83 5 Artefact 3: Agile Software Readiness Assessment Procedures 121 5.1 Meta Data 121 5.2 Meta Data 122 5.3 Summary 123 5.4 Adding Agility to Software Readiness Assessment Procedures 126 5.5 Continuous Software Readiness Assessments for Agile Development 147 6 Conclusion and Future Work 158 6.1 Contributions 158 6.1.1 Strategic Dimension: Artefact 1 158 6.1.2 Business Dimension: Artefact 2 159 6.1.3 Process Dimension: Artefact 3 161 6.1.4 Synthesis of Contributions 163 6.2 Implications 167 6.2.1 Scientific Implications 167 6.2.2 Managerial Implications 168 6.2.3 Intelligent Parking Service Example (ParkSpotHelp) 171 6.3 Concluding Remarks 174 6.3.1 Threats to Validity 174 6.3.2 Outlook and Future Research Recommendations 174 Appendix VII Bibliography XX Wissenschaftlicher Werdegang XXXVII Selbständigkeitserklärung XXXVII

    EMPOWERING PRACTITIONERS: A CONCEPTUAL FRAMEWORK FOR VALUE CO-CREATION THROUGH SMART SERVICE INNOVATION METHODOLOGIES

    Get PDF
    Smart services offer great innovation potential by incorporating digital technologies into non-digital value-creation processes. As smart service innovation poses significant challenges to organizations, existing research has contributed to understanding and addressing this phenomenon by developing various methods, tools, and processes. Yet, the academic community often still fails to bridge the “last mile” and help practitioners apply this knowledge in their specific application contexts. This article outlines how research can empower practitioners by systematically providing methodological knowledge for smart service innovation. We review and contrast existing methodologies and present a conceptual framework for value co-creation through smart service innovation methodologies. In addition, we identify six essential resource types required in these methodologies and propose emergent research avenues to guide future contributions to smart service innovation research

    Empowering Practitioners: A Conceptual Framework for Value Co-Creation through Smart Service Innovation Methodologies

    Get PDF
    Smart services offer great innovation potential by incorporating digital technologies into non-digital value-creation processes. As smart service innovation poses significant challenges to organizations, existing research has contributed to understanding and addressing this phenomenon by developing various methods, tools, and processes. Yet, the academic community often still fails to bridge the “last mile” and help practitioners apply this knowledge in their specific application contexts. This article outlines how research can empower practitioners by systematically providing methodological knowledge for smart service innovation. We review and contrast existing methodologies and present a conceptual framework for value co-creation through smart service innovation methodologies. In addition, we identify six essential resource types required in these methodologies and propose emergent research avenues to guide future contributions to smart service innovation research

    Development and implementation of a comprehensive construction management approach through collaborative interaction of 5D BIM design, multi-flexible construction execution organization, and continuous improvement principles

    Get PDF
    RESUMEN: Aunque en los últimos años se han implementado enormes avances tecnológicos y estratégicos en el sector de la construcción, existe un margen sustancial de mejora. La presente tesis descubre por qué las herramientas de programación aplicadas actualmente y los enfoques de organización de proyectos basados en la agilidad no han alcanzado todavía todo su potencial. La falta de interrelación entre los aspectos de diseño, coste y tiempo del proyecto dentro de la fase de diseño del mismo y su escasa utilización a lo largo de la ejecución del proyecto se señalan como los factores que contribuyen a la lentitud del desarrollo. Para cambiar fundamentalmente esta situación, se propone una solución de organización de proyectos amplia y coherente. El proceso clave de esta solución utiliza un modelo de información de construcción 5D que comprende estrechas concatenaciones entre los objetos individuales del modelo y los correspondientes valores de coste de construcción y esfuerzo de tiempo. Las fechas clave de una simulación del proceso de construcción en cascada, establecidas durante la fase de planificación del proyecto, proporcionan información particular para crear una estructura para la ejecución ágil y organizada del proyecto. La implementación de bucles de retroalimentación de la información permite realizar comparaciones entre los objetivos y la realidad y contribuye a mejorar continuamente la planificación futura. Se llevó a cabo un estudio de caso comparativo con resultados auspiciosos sobre las mejoras en el rendimiento general del proyecto y la fiabilidad del calendario y los costes.ABSTRACT: Although tremendous technological and strategic advances have been implemented in the construction sector in recent years, there is substantial room for improvements. The present thesis discovers why the currently applied scheduling tools and agile-based project organization approaches have not yet achieved their full potential. A missing interlinkage between the project’s design, cost, and time aspects within the project design phase and its sparse utilization throughout project execution were indicated as the driving contributors responsible for the slow progress in development. To fundamentally change this situation, an extensive and coherent project organization solution is proposed. The key process of this solution utilizes a 5D Building Information Model comprising tight concatenations between the individual model objects and the corresponding construction cost and time effort values. The key dates of a waterfall-based construction process simulation, set during the project planning phase, provide particular information to create a structure for agile organized project execution. The implementation of information feedback loops allows target/actual comparisons and contributes to continual improvements in future planning. A comparative case study was conducted with auspicious results on improvements in the overall project performance, and schedule and cost reliability

    The Changing Landscape of Energy Management in Manufacturing

    Get PDF
    The production and use of energy accounts for around 60% of global greenhouse gas (GHG) emissions, providing an intrinsic link between cause and effect. Considering that the manufacturing industry is responsible for roughly one-third of the global energy demand enforces the need to ensure that the manufacturing sector continually strives to reduce its reliance on energy and thus minimise GHG released into the atmosphere. Consequently, efficient management of energy consumption is of paramount importance for modern manufacturing businesses due to well-documented negative impacts regarding energy generation from fossil fuels and rapidly rising worldwide energy costs. This has resulted in a proliferation of research in this area which has considered improvements in energy consuming activities at the enterprise, facility, cell, machine and turret levels. However, there is now a need to go beyond incremental energy efficiency improvements and take more radical approaches to reduce energy consumption. It is argued that the largest energy reduction improvements can be achieved through better design of production systems or by adopting new business strategies that reduce the reliance of manufacturing businesses on resource consumption. This chapter initially provides a review of research in energy management (EM) at various manufacturing focus levels. The inappropriateness of current methods to cater for transformative and radical energy reduction approaches is discussed. In particular, limitations are found at the business strategy level since no technique exists to consider the input of these high level decisions on energy consumption. The main part of the chapter identifies areas of further opportunity in energy management research, and describes a method to facilitate further reductions in energy use and GHG production in manufacturing at the business strategy level
    corecore