2,407 research outputs found

    Optimised Residential Loads Scheduling Based on Dynamic Pricing of Electricity : A Simulation Study

    Get PDF
    This paper presents a simulation study which addresses Demand Side Management (DSM) via scheduling and optimization of a set of residential smart appliances under day-ahead variable pricing with the aim of minimizing the customer’s energy bill. The appliances’ operation and the overall model are subject to the manufacturer and user specific constraints formulated as a constrained linear programming problem. The overall model is simulated using MATLAB and SIMULINK / SimPowerSystems basic blocks. The results comparing Real Time Pricing (RTP) and the Fixed Time Tariff (FTT) demonstrate that optimal scheduling of the residential smart appliances can potentially result in energy cost savings. The extension of the model to incorporate renewable energy resources and storage system is also discussedNon peer reviewedFinal Accepted Versio

    Capturing Aggregate Flexibility in Demand Response

    Full text link
    Flexibility in electric power consumption can be leveraged by Demand Response (DR) programs. The goal of this paper is to systematically capture the inherent aggregate flexibility of a population of appliances. We do so by clustering individual loads based on their characteristics and service constraints. We highlight the challenges associated with learning the customer response to economic incentives while applying demand side management to heterogeneous appliances. We also develop a framework to quantify customer privacy in direct load scheduling programs.Comment: Submitted to IEEE CDC 201

    A Distributed Demand-Side Management Framework for the Smart Grid

    Get PDF
    This paper proposes a fully distributed Demand-Side Management system for Smart Grid infrastructures, especially tailored to reduce the peak demand of residential users. In particular, we use a dynamic pricing strategy, where energy tariffs are function of the overall power demand of customers. We consider two practical cases: (1) a fully distributed approach, where each appliance decides autonomously its own scheduling, and (2) a hybrid approach, where each user must schedule all his appliances. We analyze numerically these two approaches, showing that they are characterized practically by the same performance level in all the considered grid scenarios. We model the proposed system using a non-cooperative game theoretical approach, and demonstrate that our game is a generalized ordinal potential one under general conditions. Furthermore, we propose a simple yet effective best response strategy that is proved to converge in a few steps to a pure Nash Equilibrium, thus demonstrating the robustness of the power scheduling plan obtained without any central coordination of the operator or the customers. Numerical results, obtained using real load profiles and appliance models, show that the system-wide peak absorption achieved in a completely distributed fashion can be reduced up to 55%, thus decreasing the capital expenditure (CAPEX) necessary to meet the growing energy demand

    Optimized Household Demand Management with Local Solar PV Generation

    Full text link
    Demand Side Management (DSM) strategies are of-ten associated with the objectives of smoothing the load curve and reducing peak load. Although the future of demand side manage-ment is technically dependent on remote and automatic control of residential loads, the end-users play a significant role by shifting the use of appliances to the off-peak hours when they are exposed to Day-ahead market price. This paper proposes an optimum so-lution to the problem of scheduling of household demand side management in the presence of PV generation under a set of tech-nical constraints such as dynamic electricity pricing and voltage deviation. The proposed solution is implemented based on the Clonal Selection Algorithm (CSA). This solution is evaluated through a set of scenarios and simulation results show that the proposed approach results in the reduction of electricity bills and the import of energy from the grid

    From Packet to Power Switching: Digital Direct Load Scheduling

    Full text link
    At present, the power grid has tight control over its dispatchable generation capacity but a very coarse control on the demand. Energy consumers are shielded from making price-aware decisions, which degrades the efficiency of the market. This state of affairs tends to favor fossil fuel generation over renewable sources. Because of the technological difficulties of storing electric energy, the quest for mechanisms that would make the demand for electricity controllable on a day-to-day basis is gaining prominence. The goal of this paper is to provide one such mechanisms, which we call Digital Direct Load Scheduling (DDLS). DDLS is a direct load control mechanism in which we unbundle individual requests for energy and digitize them so that they can be automatically scheduled in a cellular architecture. Specifically, rather than storing energy or interrupting the job of appliances, we choose to hold requests for energy in queues and optimize the service time of individual appliances belonging to a broad class which we refer to as "deferrable loads". The function of each neighborhood scheduler is to optimize the time at which these appliances start to function. This process is intended to shape the aggregate load profile of the neighborhood so as to optimize an objective function which incorporates the spot price of energy, and also allows distributed energy resources to supply part of the generation dynamically.Comment: Accepted by the IEEE journal of Selected Areas in Communications (JSAC): Smart Grid Communications series, to appea

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes
    corecore