87 research outputs found

    Apple (Malus domestica) and pear (Pyrus communis) yield prediction after tree image analysis

    Get PDF
    Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size. Images of trees were taken during the day and at night in apple and pear trees while fruits were manually counted. Trained models were evaluated according to recall, precision and F1score. The correlation between detected and counted fruits was calculated while fruit size estimation was made after drawing straight lines on each fruit and using reference elements. The precision, recall and F1score achieved by the models were up to 0.86, 0.83 and 0.84, respectively. Correlation coefficients between fruit sizes measured manually and by images were 0.73 for apples and 0.80 for pears. The proposed methodologies showed promising results, allowing forecasters to make less time consuming and accurate estimates compared to manual measurements. Highlights The number of fruits in apple and pear trees, could be estimated from images with promising results. The possibility of estimating the fruit numbers from images could reduce the time spent on this task, and above all, the costs. This allow growers to increase the number of trees sampled to make yield forecasts.Yield forecasting depends on accurate tree fruit counts and mean size estimation. This information is generally obtained manually, requiring many hours of work. Artificial vision emerges as an interesting alternative to obtaining more information in less time. This study aimed to test and train YOLO pre-trained models based on neural networks for the detection and count of pears and apples on trees after image analysis; while also estimating fruit size. Images of trees were taken during the day and at night in apple and pear trees while fruits were manually counted. Trained models were evaluated according to recall, precision and F1score. The correlation between detected and counted fruits was calculated while fruit size estimation was made after drawing straight lines on each fruit and using reference elements. The precision, recall and F1score achieved by the models were up to 0.86, 0.83 and 0.84, respectively. Correlation coefficients between fruit sizes measured manually and by images were 0.73 for apples and 0.80 for pears. The proposed methodologies showed promising results, allowing forecasters to make less time consuming and accurate estimates compared to manual measurements. Highlights The number of fruits in apple and pear trees, could be estimated from images with promising results. The possibility of estimating the fruit numbers from images could reduce the time spent on this task, and above all, the costs. This allow growers to increase the number of trees sampled to make yield forecasts

    A Review of the Challenges of Using Deep Learning Algorithms to Support Decision-Making in Agricultural Activities

    Get PDF
    Deep Learning has been successfully applied to image recognition, speech recognition, and natural language processing in recent years. Therefore, there has been an incentive to apply it in other fields as well. The field of agriculture is one of the most important fields in which the application of deep learning still needs to be explored, as it has a direct impact on human well-being. In particular, there is a need to explore how deep learning models can be used as a tool for optimal planting, land use, yield improvement, production/disease/pest control, and other activities. The vast amount of data received from sensors in smart farms makes it possible to use deep learning as a model for decision-making in this field. In agriculture, no two environments are exactly alike, which makes testing, validating, and successfully implementing such technologies much more complex than in most other industries. This paper reviews some recent scientific developments in the field of deep learning that have been applied to agriculture, and highlights some challenges and potential solutions using deep learning algorithms in agriculture. The results in this paper indicate that by employing new methods from deep learning, higher performance in terms of accuracy and lower inference time can be achieved, and the models can be made useful in real-world applications. Finally, some opportunities for future research in this area are suggested.This work is supported by the R&D Project BioDAgro—Sistema operacional inteligente de informação e suporte á decisão em AgroBiodiversidade, project PD20-00011, promoted by Fundação La Caixa and Fundação para a Ciência e a Tecnologia, taking place at the C-MAST-Centre for Mechanical and Aerospace Sciences and Technology, Department of Electromechanical Engineering of the University of Beira Interior, Covilhã, Portugal.info:eu-repo/semantics/publishedVersio

    Swin-transformer-yolov5 For Real-time Wine Grape Bunch Detection

    Full text link
    In this research, an integrated detection model, Swin-transformer-YOLOv5 or Swin-T-YOLOv5, was proposed for real-time wine grape bunch detection to inherit the advantages from both YOLOv5 and Swin-transformer. The research was conducted on two different grape varieties of Chardonnay (always white berry skin) and Merlot (white or white-red mix berry skin when immature; red when matured) from July to September in 2019. To verify the superiority of Swin-T-YOLOv5, its performance was compared against several commonly used/competitive object detectors, including Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5. All models were assessed under different test conditions, including two different weather conditions (sunny and cloudy), two different berry maturity stages (immature and mature), and three different sunlight directions/intensities (morning, noon, and afternoon) for a comprehensive comparison. Additionally, the predicted number of grape bunches by Swin-T-YOLOv5 was further compared with ground truth values, including both in-field manual counting and manual labeling during the annotation process. Results showed that the proposed Swin-T-YOLOv5 outperformed all other studied models for grape bunch detection, with up to 97% of mean Average Precision (mAP) and 0.89 of F1-score when the weather was cloudy. This mAP was approximately 44%, 18%, 14%, and 4% greater than Faster R-CNN, YOLOv3, YOLOv4, and YOLOv5, respectively. Swin-T-YOLOv5 achieved its lowest mAP (90%) and F1-score (0.82) when detecting immature berries, where the mAP was approximately 40%, 5%, 3%, and 1% greater than the same. Furthermore, Swin-T-YOLOv5 performed better on Chardonnay variety with achieved up to 0.91 of R2 and 2.36 root mean square error (RMSE) when comparing the predictions with ground truth. However, it underperformed on Merlot variety with achieved only up to 0.70 of R2 and 3.30 of RMSE.Comment: 30 pages; 15 figures;Corresponding author: Xin Zhang Department of Agricultural and Biological Engineering Mississippi State University Mississippi State, MS 39762, USA ([email protected]

    Comparative Analysis of Fruit Disease Identification Methods: A Comprehensive Study

    Get PDF
    The need for accurate and efficient technologies for recognising and controlling fruit diseases has increased due to the rising global demand for high-quality agricultural products. This study focuses on the advantages, disadvantages, and potential practical applications of a range of methods for identifying fecundities. Thanks to developments like improved imaging, machine learning, and data analysis tools, old methods of disease diagnosis have altered as technology has developed. The study compares older methods like visual observation, manual symptom correlation, spectroscopy, and chemical procedures with more contemporary methods like computer vision, autonomous learning algorithms, and sensor-based technologies. Precision, efficiency, cost, scalability, and ease of use are used to describe each method's effectiveness. The article reviews the research examples and practical applications of fruit endocrine disease detection in different cultivars and areas to provide a thorough comparison. This comparison focuses on the variations in disease prevalence and the ways that alternative treatments can be customised to certain situations.It is for this reason that this study offers useful information on how the methods for detecting fruit rot have evolved through time. It emphasises the significance of utilising technological advances to enhance the accuracy, effectiveness, and long-term sustainability of the management of agricultural diseases. Based on the unique requirements of their various agricultural systems, this analysis can assist researchers, practitioners, and policymakers in selecting the most effective methods for identifying fruit diseases

    Fruit sizing using AI: A review of methods and challenges

    Get PDF
    Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.info:eu-repo/semantics/publishedVersio

    Road Deterioration detection A Machine Learning-Based System for Automated Pavement Crack Identification and Analysis

    Get PDF
    Road surfaces may deteriorate over time because of a number of external factors such as heavy traffic, unfavourable weather, and poor design. These flaws, which may include potholes, fissures, and uneven surfaces, can pose significant safety threats to both vehicles and pedestrians. This research aims to develop and evaluate an automated system for detecting and analyzing cracks in pavements based on machine learning. The research explores the utilisation of object detection techniques to identify and categorize different types of pavement cracks. Additionally, the proposed work investigates several approaches to integrate the outcome system with existing pavement management systems to enhance road maintenance and sustainability. The research focuses on identifying reliable data sources, creating accurate and effective object detection algorithms for pavement crack detection, classifying various types of cracks, and assessing their severity and extent. The research objectives include gathering reliable datasets, developing a precise and effective object detection algorithm, classifying different types of pavement cracks, and determining the severity and extent of the cracks. The study collected pavement crack images from various sources, including publicly available databases and images captured using mobile devices. Multiple object detection models, such as YOLOv5, YOLOv8, and CenterNet were trained and tested using the collected dataset. The proposed approaches were evaluated using different performance metrics, The achieved results indicated that the YOLOv5 model outperformed CenterNet by a significant margin

    Real-time image detection for edge devices: a peach fruit detection application

    Get PDF
    Within the scope of precision agriculture, many applications have been developed to support decision making and yield enhancement. Fruit detection has attracted considerable attention from researchers, and it can be used offline. In contrast, some applications, such as robot vision in orchards, require computer vision models to run on edge devices while performing inferences at high speed. In this area, most modern applications use an integrated graphics processing unit (GPU). In this work, we propose the use of a tensor processing unit (TPU) accelerator with a Raspberry Pi target device and the state-of-the-art, lightweight, and hardware-aware MobileDet detector model. Our contribution is the extension of the possibilities of using accelerators (the TPU) for edge devices in precision agriculture. The proposed method was evaluated using a novel dataset of peaches with three cultivars, which will be made available for further studies. The model achieved an average precision (AP) of 88.2% and a performance of 19.84 frames per second (FPS) at an image size of 640 × 480. The results obtained show that the TPU accelerator can be an excellent alternative for processing on the edge in precision agriculture.info:eu-repo/semantics/publishedVersio

    Symptoms Based Image Predictive Analysis for Citrus Orchards Using Machine Learning Techniques: A Review

    Get PDF
    In Agriculture, orchards are the deciding factor in the country’s economy. There are many orchards, and citrus and sugarcane will cover 60 percent of them. These citrus orchards satisfy the necessity of citrus fruits and citrus products, and these citrus fruits contain more vitamin C. The citrus orchards have had some problems generating good yields and quality products. Pathogenic diseases, pests, and water shortages are the three main problems that plants face. Farmers can find these problems early on with the support of machine learning and deep learning, which may also change how they feel about technology.  By doing this in agriculture, the farmers can cut off the major issues of yield and quality losses. This review gives enormous methods for identifying and classifying plant pathogens, pests, and water stresses using image-based work. In this review, the researchers present detailed information about citrus pathogens, pests, and water deficits. Methods and techniques that are currently available will be used to validate the problem. These will include pre-processing for intensification, segmentation, feature extraction, and selection processes, machine learning-based classifiers, and deep learning models. In this work, researchers thoroughly examine and outline the various research opportunities in the field. This review provides a comprehensive analysis of citrus plants and orchards; Researchers used a systematic review to ensure comprehensive coverage of this topic

    Crop Yield Estimation Using Deep Learning Based on Climate Big Data and Irrigation Scheduling

    Get PDF
    Deep learning has already been successfully used in the development of decision support systems in various domains. Therefore, there is an incentive to apply it in other important domains such as agriculture. Fertilizers, electricity, chemicals, human labor, and water are the components of total energy consumption in agriculture. Yield estimates are critical for food security, crop management, irrigation scheduling, and estimating labor requirements for harvesting and storage. Therefore, estimating product yield can reduce energy consumption. Two deep learning models, Long Short-Term Memory and Gated Recurrent Units, have been developed for the analysis of time-series data such as agricultural datasets. In this paper, the capabilities of these models and their extensions, called Bidirectional Long Short-Term Memory and Bidirectional Gated Recurrent Units, to predict end-of-season yields are investigated. The models use historical data, including climate data, irrigation scheduling, and soil water content, to estimate end-of-season yield. The application of this technique was tested for tomato and potato yields at a site in Portugal. The Bidirectional Long Short-Term memory outperformed the Gated Recurrent Units network, the Long Short-Term Memory, and the Bidirectional Gated Recurrent Units network on the validation dataset. The model was able to capture the nonlinear relationship between irrigation amount, climate data, and soil water content and predict yield with an MSE of 0.017 to 0.039. The performance of the Bidirectional Long Short-Term Memory in the test was compared with the most commonly used deep learning method, the Convolutional Neural Network, and machine learning methods including a Multi-Layer Perceptrons model and Random Forest Regression. The Bidirectional Long Short-Term Memory outperformed the other models with an R2 score between 0.97 and 0.99. The results show that analyzing agricultural data with the Long Short-Term Memory model improves the performance of the model in terms of accuracy. The Convolutional Neural Network model achieved the second-best performance. Therefore, the deep learning model has a remarkable ability to predict the yield at the end of the season.Project Centro-01-0145-FEDER000017-EMaDeS-Energy, Materials, and Sustainable Development, co-funded by the Portugal 2020 Program (PT 2020), within the Regional Operational Program of the Center (CENTRO 2020) and the EU through the European Regional Development Fund (ERDF). Fundação para a Ciência e a Tecnologia (FCT—MCTES) also provided financial support via project UIDB/00151/2020 (C-MAST).info:eu-repo/semantics/publishedVersio
    • …
    corecore