45 research outputs found

    181 Studies on Fruit Thinning and Growth in Apple Cultivars

    Get PDF
    Experiments were carried out for 3 years on `Gala' and `Fuji' apple cultivars. The efficacy of the compounds applied during blooming (ATS, Armothin) and at 10 mm king fruit diameter (BA, CPPU, and NAA) was studied. Results showed a poor efficacy of the chemicals applied during bloom, while compounds applied at fruit set showed interesting results. Among the new chemicals, citokinins were the most effective, although their effects were related to the cultivar: BA performs better than CPPU on `Fuji' while vice versa on `Gala'. In addition, both chemicals induced a slightly higher °Brix content, and acidity level showed the tendency to increase L/D ratio of the fruits as compared to controls. Fruit thinning and the strategies to enhance fruit size are applied early in the season and the problem remains, to assess their effectiveness as early as possible in order to adapt the management techniques (e.g., further thinning, if applicable, or fine-tuning of nutrition and irrigation, etc.) to enable the fruit to reach their maximum potential development. A modelling approach proposed by Lakso et al. (1995) postulates that apples grow in weight according to an equation termed "expolinear" (Goudriaan and Monteith, 1990) because after an initial phase of exponential growth (cell division), the apple enters a phase of linear growth (cell expansion) lasting up to harvest. The effectiveness of a thinning agent can therefore be evaluated-and explained-in terms either of the number of cells of the cortex tissue, or of their volume, or both. In addition, assessing the slope of the linear phase as early as possible might provide a prediction tool to evaluate size at harvest. This paper presents data from apple thinning trials on several cultivars. The effectiveness of these applications has been evaluated via an analysis of the cell parameters (number, volume and intercellular spaces) of the fruit's parenchyma cortex tissue. Also, fruit growth data have been used to test the possibility to predict fruit size at harvest once the fruit reaches the phase of linear growth

    Maize Genetic Resources

    Get PDF
    Maize is one of the most economically important food crops worldwide. It is used for livestock feeds and human nutrition. Recent strategies have been adopted for improving maize crops. This book brings together recent advances, breeding strategies, and applications in the biological control, breeding, and genetic improvement of maize genetic resources. It also provides new insights and sheds light on new perspectives and future research work that have been carried out for further improvement of maize crops. This book is a useful resource for students, researchers, and scientists

    Developing Animal Feed Preservatives From Paper Mill Byproducts

    Get PDF
    Our objectives were to evaluate the antifungal properties of technical lignins against 3 molds and 1 yeast causing hay spoilage, and for their ability to preserve alfalfa hay nutritive value. In experiment 1, 8 technical lignins and propionic acid (PRP; positive control) were tested at a dose of 40 mg/mL. The experiment had a randomized complete block design (RCBD, 4 runs) and a factorial arrangement of 3 molds × 10 additives (ADV). The effects of ADV on the yeast were also evaluated with a RCBD. Across fungi, sodium lignosulfonate (NaL) and PRP were the only treatments with a 100 ± 2.8% inhibition. In experiment 2, the minimum inhibitory (MIC) for selected technical lignins and PRP were determined. Among technical lignins, NaL had the lowest MIC across molds (\u3c 33.3 mg/mL) and MgL for the yeast (26.7). However, PRP had values that were several fold lower across all fungi (\u3c 3.33). In experiment 3, a RCBD (5 blocks) with a 3 (ADV; NaL, MgL, and PRP) × 4 (doses: 0, 0.5, 1, and 3% w/w fresh basis) factorial arrangement of treatments was used to evaluate the preservative effects of ADV in high moisture alfalfa hay inoculated with a mixture of the fungi previously tested and incubated under aerobic conditions. After 15 d, relative to untreated hay (14.9 ± 0.77%), DM losses were lessened by doses as low as 1% for NaL (3.39) and 0.5% for PRP (0.81). This was explained by a reduced mold count in both NaL at 3% (3.92 ± 0.55 log cfu/fresh g) and PRP as low as 0.5% (3.94) relative to untreated hay (7.76). Consequently, sugars were best preserved by NaL at 3% (10.1 ± 0.283% DM) and PRP as low as 0.5% (10.5) vs. untreated (7.99), while keeping NDF values lower in NaL (45.9 ± 0.66% DM) and PRP-treated (45.1) hays at the same doses, respectively, relative to untreated (49.7 ± 0.66% DM). Hay DMD was increased by doses as low as 3% for NaL (67.5± 0.77%), 1% MgL (67.0), and 0.5% PRP (68.5) vs. untreated hay (61.8). In the case of NDFD, 0.5% for MgL and PRP (30.5 and 30.1 ± 1.09% DM, respectively) and 1% for NaL (30.7) were the lowest doses increasing NDFD relative to untreated hay (23.3). Total volatile fatty acids were increased to the greatest extent by NaL at 3% (111.9 ± 1.3 mM) relative to spoiled hay (86.7). Across technical lignins, NaL was the best hay preservative. However, its effects were limited compared to PRP at equivalent doses. Despite not having an effect on preservation, MgL improved DMD by stimulating NDFD. Further research needs to be conducted to isolate the most antifungal fraction of NaL and to understand the stimulatory effects of MgL on fiber degradation. Keywords: hay preservation, technical lignins, ruminal digestibility

    Mathematical model of interactions immune system with Micobacterium tuberculosis

    Get PDF
    Tuberculosis (TB) remains a public health problem in the world, because of the increasing prevalence and treatment outcomes are less satisfactory. About 3 million people die each year and an estimated one third of the world's population infected with Mycobacterium Tuberculosis (M.tb) is latent. This is apparently related to incomplete understanding of the immune system in infection M.tb. When this has been known that immune responses that play a role in controlling the development of M.tb is Macrophages, T Lymphocytes and Cytokines as mediators. However, how the interaction between the two populations and a variety of cytokines in suppressing the growth of Mycobacterium tuberculosis germ is still unclear. To be able to better understand the dynamics of infection with M tuberculosis host immune response is required of a model.One interesting study on the interaction of the immune system with M.tb mulalui mathematical model approach. Mathematical model is a good tool in understanding the dynamic behavior of a system. With the mediation of mathematical models are expected to know what variables are most responsible for suppressing the growth of Mycobacterium tuberculosis germ that can be a more appropriate approach to treatment and prevention target is to develop a vaccine. This research aims to create dynamic models of interaction between macrophages (Macrophages resting, macrophages activated and macrophages infected), T lymphocytes (CD4 + T cells and T cells CD8 +) and cytokine (IL-2, IL-4, IL-10,IL-12,IFN-dan TNF-) on TB infection in the lung. To see the changes in each variable used parameter values derived from experimental literature. With the understanding that the variable most responsible for defense against Mycobacterium tuberculosis germs, it can be used as the basis for the development of a vaccine or drug delivery targeted so hopefully will improve the management of patients with tuberculosis. Mathematical models used in building Ordinary Differential Equations (ODE) in the form of differential equation systems Non-linear first order, the equation contains the functions used in biological systems such as the Hill function, Monod function, Menten- Kinetic Function. To validate the system used 4th order Runge Kutta method with the help of software in making the program Matlab or Maple to view the behavior and the quantity of cells of each population
    corecore