6,146 research outputs found

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    Automatic segmentation of the left ventricle cavity and myocardium in MRI data

    Get PDF
    A novel approach for the automatic segmentation has been developed to extract the epi-cardium and endo-cardium boundaries of the left ventricle (lv) of the heart. The developed segmentation scheme takes multi-slice and multi-phase magnetic resonance (MR) images of the heart, transversing the short-axis length from the base to the apex. Each image is taken at one instance in the heart's phase. The images are segmented using a diffusion-based filter followed by an unsupervised clustering technique and the resulting labels are checked to locate the (lv) cavity. From cardiac anatomy, the closest pool of blood to the lv cavity is the right ventricle cavity. The wall between these two blood-pools (interventricular septum) is measured to give an approximate thickness for the myocardium. This value is used when a radial search is performed on a gradient image to find appropriate robust segments of the epi-cardium boundary. The robust edge segments are then joined using a normal spline curve. Experimental results are presented with very encouraging qualitative and quantitative results and a comparison is made against the state-of-the art level-sets method

    Dense Motion Estimation for Smoke

    Full text link
    Motion estimation for highly dynamic phenomena such as smoke is an open challenge for Computer Vision. Traditional dense motion estimation algorithms have difficulties with non-rigid and large motions, both of which are frequently observed in smoke motion. We propose an algorithm for dense motion estimation of smoke. Our algorithm is robust, fast, and has better performance over different types of smoke compared to other dense motion estimation algorithms, including state of the art and neural network approaches. The key to our contribution is to use skeletal flow, without explicit point matching, to provide a sparse flow. This sparse flow is upgraded to a dense flow. In this paper we describe our algorithm in greater detail, and provide experimental evidence to support our claims.Comment: ACCV201

    Static/Dynamic Filtering for Mesh Geometry

    Get PDF
    The joint bilateral filter, which enables feature-preserving signal smoothing according to the structural information from a guidance, has been applied for various tasks in geometry processing. Existing methods either rely on a static guidance that may be inconsistent with the input and lead to unsatisfactory results, or a dynamic guidance that is automatically updated but sensitive to noises and outliers. Inspired by recent advances in image filtering, we propose a new geometry filtering technique called static/dynamic filter, which utilizes both static and dynamic guidances to achieve state-of-the-art results. The proposed filter is based on a nonlinear optimization that enforces smoothness of the signal while preserving variations that correspond to features of certain scales. We develop an efficient iterative solver for the problem, which unifies existing filters that are based on static or dynamic guidances. The filter can be applied to mesh face normals followed by vertex position update, to achieve scale-aware and feature-preserving filtering of mesh geometry. It also works well for other types of signals defined on mesh surfaces, such as texture colors. Extensive experimental results demonstrate the effectiveness of the proposed filter for various geometry processing applications such as mesh denoising, geometry feature enhancement, and texture color filtering

    Multiple Sclerosis Detection in Multispectral Magnetic Resonance Images with Principal Components Analysis

    Get PDF
    This paper presents a local feature vector based method for automated Multiple Sclerosis (MS) lesion segmentation of multi spectral MRI data. Twenty datasets from MS patients with FLAIR, T1,T2, MD and FA data with expert annotations are available as training set from the MICCAI 2008 challenge on MS, and 24 test datasets. Our local feature vector method contains neighbourhood voxel intensities, histogram and MS probability atlas information. Principal Component Analysis(PCA) with log-likelihood ratio is used to classify each voxel. MRI suffers from intensity inhomogenities. We try to correct this 'bias field' with 3 methods: a genetic algorithm, edge preserving filtering and atlas based correction. A large observer variability exist between expert classifications, but the similarity scores between model and expert classifications are often lower. Our model gives the best classification results with raw data, because bias correction gives artifacts at the edges and flatten large MS lesions
    corecore