65,659 research outputs found

    Appearance modeling under geometric context for object recognition in videos

    Get PDF
    Object recognition is a very important high-level task in surveillance applications. This dissertation focuses on building appearance models for object recognition and exploring the relationship between shape and appearance for two key types of objects, human and vehicle. The dissertation proposes a generic framework that models the appearance while incorporating certain geometric prior information, or the so-called geometric context. Then under this framework, special methods are developed for recognizing humans and vehicles based on their appearance and shape attributes in surveillance videos. The first part of the dissertation presents a unified framework based on a general definition of geometric transform (GeT) which is applied to modeling object appearances under geometric context. The GeT models the appearance by applying designed functionals over certain geometric sets. GeT unifies Radon transform, trace transform, image warping etc. Moreover, five novel types of GeTs are introduced and applied to fingerprinting the appearance inside a contour. They include GeT based on level sets, GeT based on shape matching, GeT based on feature curves, GeT invariant to occlusion, and a multi-resolution GeT (MRGeT) that combines both shape and appearance information. The second part focuses on how to use the GeT to build appearance models for objects like walking humans, which have articulated motion of body parts. This part also illustrates the application of GeT for object recognition, image segmentation, video retrieval, and image synthesis. The proposed approach produces promising results when applied to automatic body part segmentation and fingerprinting the appearance of a human and body parts despite the presence of non-rigid deformations and articulated motion. It is very important to understand the 3D structure of vehicles in order to recognize them. To reconstruct the 3D model of a vehicle, the third part presents a factorization method for structure from planar motion. Experimental results show that the algorithm is accurate and fairly robust to noise and inaccurate calibration. Differences and the dual relationship between planar motion and planar object are also clarified in this part. Based on our method, a fully automated vehicle reconstruction system has been designed

    Relation Networks for Object Detection

    Full text link
    Although it is well believed for years that modeling relations between objects would help object recognition, there has not been evidence that the idea is working in the deep learning era. All state-of-the-art object detection systems still rely on recognizing object instances individually, without exploiting their relations during learning. This work proposes an object relation module. It processes a set of objects simultaneously through interaction between their appearance feature and geometry, thus allowing modeling of their relations. It is lightweight and in-place. It does not require additional supervision and is easy to embed in existing networks. It is shown effective on improving object recognition and duplicate removal steps in the modern object detection pipeline. It verifies the efficacy of modeling object relations in CNN based detection. It gives rise to the first fully end-to-end object detector

    Lifting GIS Maps into Strong Geometric Context for Scene Understanding

    Full text link
    Contextual information can have a substantial impact on the performance of visual tasks such as semantic segmentation, object detection, and geometric estimation. Data stored in Geographic Information Systems (GIS) offers a rich source of contextual information that has been largely untapped by computer vision. We propose to leverage such information for scene understanding by combining GIS resources with large sets of unorganized photographs using Structure from Motion (SfM) techniques. We present a pipeline to quickly generate strong 3D geometric priors from 2D GIS data using SfM models aligned with minimal user input. Given an image resectioned against this model, we generate robust predictions of depth, surface normals, and semantic labels. We show that the precision of the predicted geometry is substantially more accurate other single-image depth estimation methods. We then demonstrate the utility of these contextual constraints for re-scoring pedestrian detections, and use these GIS contextual features alongside object detection score maps to improve a CRF-based semantic segmentation framework, boosting accuracy over baseline models
    • …
    corecore