33,612 research outputs found

    A Compressive Multi-Mode Superresolution Display

    Get PDF
    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image.Comment: Technical repor

    Graphic overlays in high-precision teleoperation: Current and future work at JPL

    Get PDF
    In space teleoperation additional problems arise, including signal transmission time delays. These can greatly reduce operator performance. Recent advances in graphics open new possibilities for addressing these and other problems. Currently a multi-camera system with normal 3-D TV and video graphics capabilities is being developed. Trained and untrained operators will be tested for high precision performance using two force reflecting hand controllers and a voice recognition system to control two robot arms and up to 5 movable stereo or non-stereo TV cameras. A number of new techniques of integrating TV and video graphics displays to improve operator training and performance in teleoperation and supervised automation are evaluated

    Reflectance Transformation Imaging (RTI) System for Ancient Documentary Artefacts

    No full text
    This tutorial summarises our uses of reflectance transformation imaging in archaeological contexts. It introduces the UK AHRC funded project reflectance Transformation Imaging for Anciant Documentary Artefacts and demonstrates imaging methodologies

    Spatial deconvolution of spectropolarimetric data: an application to quiet Sun magnetic elements

    Full text link
    Observations of the Sun from the Earth are always limited by the presence of the atmosphere, which strongly disturbs the images. A solution to this problem is to place the telescopes in space satellites, which produce observations without any (or limited) atmospheric aberrations. However, even though the images from space are not affected by atmospheric seeing, the optical properties of the instruments still limit the observations. In the case of diffraction limited observations, the PSF establishes the maximum allowed spatial resolution, defined as the distance between two nearby structures that can be properly distinguished. In addition, the shape of the PSF induce a dispersion of the light from different parts of the image, leading to what is commonly termed as stray light or dispersed light. This effect produces that light observed in a spatial location at the focal plane is a combination of the light emitted in the object at relatively distant spatial locations. We aim to correct the effect produced by the telescope's PSF using a deconvolution method, and we decided to apply the code on Hinode/SP quiet Sun observations. We analyze the validity of the deconvolution process with noisy data and we infer the physical properties of quiet Sun magnetic elements after the deconvolution process.Comment: 14 pages, 9 figure

    California coast nearshore processes study

    Get PDF
    There are no author-identified significant results in this report
    • …
    corecore