5 research outputs found

    Biohybrid robotics: From the nanoscale to the macroscale

    Full text link
    Biohybrid robotics is a field in which biological entities are combined with artificial materials in order to obtain improved performance or features that are difficult to mimic with hand-made materials. Three main level of integration can be envisioned depending on the complexity of the biological entity, ranging from the nanoscale to the macroscale. At the nanoscale, enzymes that catalyze biocompatible reactions can be used as power sources for self-propelled nanoparticles of different geometries and compositions, obtaining rather interesting active matter systems that acquire importance in the biomedical field as drug delivery systems. At the microscale, single enzymes are substituted by complete cells, such as bacteria or spermatozoa, whose self-propelling capabilities can be used to transport cargo and can also be used as drug delivery systems, for in vitro fertilization practices or for biofilm removal. Finally, at the macroscale, the combinations of millions of cells forming tissues can be used to power biorobotic devices or bioactuators by using muscle cells. Both cardiac and skeletal muscle tissue have been part of remarkable examples of untethered biorobots that can crawl or swim due to the contractions of the tissue and current developments aim at the integration of several types of tissue to obtain more realistic biomimetic devices, which could lead to the next generation of hybrid robotics. Tethered bioactuators, however, result in excellent candidates for tissue models for drug screening purposes or the study of muscle myopathies due to their three-dimensional architecture

    Low-power microelectronics embedded in live jellyfish enhance propulsion

    Get PDF
    Artificial control of animal locomotion has the potential to simultaneously address longstanding challenges to actuation, control, and power requirements in soft robotics. Robotic manipulation of locomotion can also address previously inaccessible questions about organismal biology otherwise limited to observations of naturally occurring behaviors. Here, we present a biohybrid robot that uses onboard microelectronics to induce swimming in live jellyfish. Measurements demonstrate that propulsion can be substantially enhanced by driving body contractions at an optimal frequency range faster than natural behavior. Swimming speed can be enhanced nearly threefold, with only a twofold increase in metabolic expenditure of the animal and 10 mW of external power input to the microelectronics. Thus, this biohybrid robot uses 10 to 1000 times less external power per mass than other aquatic robots reported in literature. This capability can expand the performance envelope of biohybrid robots relative to natural animals for applications such as ocean monitoring

    Hybrid bio-robotics: from the nanoscale to the macroscale

    Get PDF
    [eng] Hybrid bio-robotics is a discipline that aims at integrating biological entities with synthetic materials to incorporate features from biological systems that have been optimized through millions of years of evolution and are difficult to replicate in current robotic systems. We can find examples of this integration at the nanoscale, in the field of catalytic nano- and micromotors, which are particles able to self-propel due to catalytic reactions happening in their surface. By using enzymes, these nanomotors can achieve motion in a biocompatible manner, finding their main applications in active drug delivery. At the microscale, we can find single-cell bio-swimmers that use the motion capabilities of organisms like bacteria or spermatozoa to transport microparticles or microtubes for targeted therapeutics or bio-film removal. At the macroscale, cardiac or skeletal muscle tissue are used to power small robotic devices that can perform simple actions like crawling, swimming, or gripping, due to the contractions of the muscle cells. This dissertation covers several aspects of these kinds of devices from the nanoscale to the macro-scale, focusing on enzymatically propelled nano- and micromotors and skeletal muscle tissue bio-actuators and bio-robots. On the field of enzymatic nanomotors, there is a need for a better description of their dynamics that, consequently, might help understand their motion mechanisms. Here, we focus on several examples of nano- and micromotors that show complex dynamics and we propose different strategies to analyze their motion. We develop a theoretical framework for the particular case of enzymatic motors with exponentially decreasing speed, which break the assumptions of constant speed of current methods of analysis and need different strategies to characterize their motion. Finally, we consider the case of enzymatic nanomotors moving in complex biological matrices, such as hyaluronic acid, and we study their interactions and the effects of the catalytic reaction using dynamic light scattering, showing that nanomotors with negative surface charge and urease-powered motion present enhanced parameters of diffusion in hyaluronic acid. Moving towards muscle-based robotics, we investigate the application of 3D bioprinting for the bioengineering of skeletal muscle tissue. We demonstrate that this technique can yield well-aligned and functional muscle fibers that can be stimulated with electric pulses. Moreover, we develop and apply a novel co-axial approach to obtain thin and individual muscle fibers that resemble the bundle-like organization of native skeletal muscle tissue. We further exploit the versatility of this technique to print several types of materials in the same process and we fabricate bio-actuators based on skeletal muscle tissue with two soft posts. Due to the deflection of these cantilevers when the tissue contracts upon stimulation, we can measure the generated forces, therefore obtaining a force measurement platform that could be useful for muscle development studies or drug testing. With these applications in mind, we study the adaptability of muscle tissue after applying various exercise protocols based on different stimulation frequencies and different post stiffness, finding an increase of the force generation, especially at medium frequencies, that resembles the response of native tissue. Moreover, we adapt the force measurement platform to be used with human-derived myoblasts and we bioengineer two models of young and aged muscle tissue that could be used for drug testing purposes. As a proof of concept, we analyze the effects of a cosmetic peptide ingredient under development, focusing on the kinematics of high stimulation contractions. Finally, we present the fabrication of a muscle-based bio-robot able to swim by inertial strokes in a liquid interface and a nanocomposite-laden bio-robot that can crawl on a surface. The first bio-robot is thoroughly characterized through mechanical simulations, allowing us to optimize the skeleton, based on a serpentine or spring-like structure. Moreover, we compare the motion of symmetric and asymmetric designs, demonstrating that, although symmetric bio-robots can achieve some motion due to spontaneous symmetry breaking during its self-assembly, asymmetric bio-robots are faster and more consistent in their directionality. The nanocomposite-laden crawling bio-robot consisted of embedded piezoelectric boron nitride nanotubes that improved the differentiation of the muscle tissue due to a feedback loop of piezoelectric effect activated by the same spontaneous contractions of the tissue. We find that bio-robots with those nanocomposites achieve faster motion and stronger force outputs, demonstrating the beneficial effects in their differentiation. This research presented in this thesis contributes to the development of the field of bio-hybrid robotic devices. On enzymatically propelled nano- and micromotors, the novel theoretical framework and the results regarding the interaction of nanomotors with complex media might offer useful fundamental knowledge for future biomedical applications of these systems. The bioengineering approaches developed to fabricate murine- or human-based bio-actuators might find applications in drug screening or to model heterogeneous muscle diseases in biomedicine using the patient’s own cells. Finally, the fabrication of bio-hybrid swimmers and nanocomposite crawlers will help understand and improve the swimming motion of these devices, as well as pave the way towards the use of nanocomposite to enhance the performance of future actuators.[spa] La bio-robótica híbrida es una disciplina cuyo objetivo es la integración de entidades biológicas con materiales sintéticos para superar los desafíos existentes en el campo de la robótica blanda, incorporando características de los sistemas biológicos que han sido optimizadas durante millones de años de evolución natural y no son fáciles de reproducir artificialmente. Esta tesis cubre varios aspectos de este tipo de dispositivos desde la nanoescala a la macroescala, enfocándose en nano- y micromotores propulsados enzimáticamente y bio-actuadores y bio-robots basados en tejido muscular esquelético. En el campo de nanomotores enzimáticos, existe la necesidad de encontrar mejores modelos que puedan describir la dinámica de su movimiento para llegar a entender sus mecanismos de propulsión subyacentes. Aquí, nos enfocamos en diversos ejemplos de nano- y micromotores que muestran dinámicas de movimiento complejas y proponemos diferentes estrategias que se pueden utilizar para analizar y caracterizar este movimiento. Moviéndonos hacia robots basados en células musculares, investigamos la aplicación de la técnica de bioimpresión en 3D para la biofabricación de músculo esquelético. Demostramos que esta técnica puede producir fibras musculares funcionales y bien alineadas que puede ser estimuladas y contraerse con pulsos eléctricos. Investigamos la versatilidad de esta técnica para imprimir varios tipos de materiales en el mismo proceso y fabricamos bio-actuadores basados en músculo esquelético. Debido a los movimientos de unos postes gracias a las contracciones musculares, podemos obtener medidas de la fuerza ejercida, obteniendo una plataforma de medición de fuerzas que podría ser de utilidad para estudios sobre el desarrollo del músculo o para testeo de fármacos. Finalmente, presentamos la fabricación de un bio-robot basado en músculo esquelético capaz de nadar en la superficie de un líquido y un bio-robot con nanocompuestos incrustados que puede arrastrarse por una superficie sólida. El primer de ellos es minuciosamente caracterizado a través de simulaciones mecánicas, permitiéndonos optimizar su esqueleto, basado en una estructura tipo serpentina o muelle. El segundo bio-robot contiene nanotubos piezoeléctricos incrustados en su tejido, los cuales ayudan en la diferenciación del músculo debido a una retroalimentación basada en su efecto piezoeléctrico y activada por las contracciones espontáneas del tejido. Mostramos que estos bio-robots pueden generar un movimiento más rápido y una mayor generación de fuerza, demostrando los efectos beneficiales en la diferenciación del tejido

    Biohybrid swimmers at low Reynolds number powered by tissue-engineered neuromuscular units

    Get PDF
    Biohybrid machines are engineered systems which are built by integrating biological cells with synthetic materials and components. Development of biohybrid machines utilizes the classical engineering modalities of design, modeling, prototype fabrication, testing, and iteration, but also draws from a toolbox that includes biological cells and materials. This enables a range of exciting possibilities since biological systems can develop via self-organization, function autonomously, and monitor and adapt to their environments. Pioneering studies on biohybrid machines have demonstrated the development of devices powered by muscle cells, capable of locomotion, pumping, and micromanipulation. A currently emerging frontier in the field is the integration of neuronal control. A wide range of complex animal behaviors are orchestrated by the nervous system which interfaces the body with the environment through sensing, information processing, and coordinating motor activity. Hence, the integration of neurons may enable the development of autonomous biohybrid machines capable of higher-level functionalities such as sensing, memory, and adaptation. The focus of this dissertation is on the implementation of neuronal actuation in muscle powered biohybrid machines. Firstly, we develop an experimental bioactuator platform to study the in vitro development of neuromuscular units. Engineered skeletal muscle tissues, anchored to compliant pillars, are co-cultured on the platform with optogenetic stem cell-derived neuronal clusters containing motor neurons. The motor neurons extend axons and innervate the muscle fibers, forming functional neuromuscular units. Our study illustrates several outcomes of synergistic interactions between the muscles and neurons. Muscles co-cultured with neurons exhibit significantly higher contraction force and cytoskeletal maturation compared to muscles cultured alone. Neurons self-organize into networks which generate synchronous bursting patterns, the development of which is facilitated by muscle-secreted soluble factors. Next, we implement our neuron-muscle co-culture approach on a free-standing compliant scaffold containing slender flagella, to demonstrate the first example of a biohybrid swimmer powered by neuromuscular units. Optogenetic stimulation of motor neurons evokes periodic muscle contractions, and the swimmer is driven by the resulting time-irreversible deformations of the flagella, a common mechanism of propulsion at low Reynolds number. Lastly, we investigate potential design strategies for improving swimming performance, assisted by analytical and computational models. Our models predict that the swimming speed of our initial prototype can be improved by up to two orders of magnitude by redesigning the swimmer scaffold to reduce drag and increase actuation amplitude

    Controlling spatiotemporal pattern formation in a concentration gradient with a synthetic toggle switch

    Get PDF
    The formation of spatiotemporal patterns of gene expression is frequently guided by gradients of diffusible signaling molecules. The toggle switch subnetwork, composed of two cross-repressing transcription factors, is a common component of gene regulatory networks in charge of patterning, converting the continuous information provided by the gradient into discrete abutting stripes of gene expression. We present a synthetic biology framework to understand and characterize the spatiotemporal patterning properties of the toggle switch. To this end, we built a synthetic toggle switch controllable by diffusible molecules in Escherichia coli. We analyzed the patterning capabilities of the circuit by combining quantitative measurements with a mathematical reconstruction of the underlying dynamical system. The toggle switch can produce robust patterns with sharp boundaries, governed by bistability and hysteresis. We further demonstrate how the hysteresis, position, timing, and precision of the boundary can be controlled, highlighting the dynamical flexibility of the circuit
    corecore