16 research outputs found

    Big Data for Traffic Monitoring and Management

    Get PDF
    The last two decades witnessed tremendous advances in the Information and Communications Technologies. Beside improvements in computational power and storage capacity, communication networks carry nowadays an amount of data which was not envisaged only few years ago. Together with their pervasiveness, network complexity increased at the same pace, leaving operators and researchers with few instruments to understand what happens in the networks, and, on the global scale, on the Internet. Fortunately, recent advances in data science and machine learning come to the rescue of network analysts, and allow analyses with a level of complexity and spatial/temporal scope not possible only 10 years ago. In my thesis, I take the perspective of an Internet Service Provider (ISP), and illustrate challenges and possibilities of analyzing the traffic coming from modern operational networks. I make use of big data and machine learning algorithms, and apply them to datasets coming from passive measurements of ISP and University Campus networks. The marriage between data science and network measurements is complicated by the complexity of machine learning algorithms, and by the intrinsic multi-dimensionality and variability of this kind of data. As such, my work proposes and evaluates novel techniques, inspired from popular machine learning approaches, but carefully tailored to operate with network traffic

    Big Data for Traffic Monitoring and Management

    Get PDF
    The last two decades witnessed tremendous advances in the Information and Com- munications Technologies. Beside improvements in computational power and storage capacity, communication networks carry nowadays an amount of data which was not envisaged only few years ago. Together with their pervasiveness, network complexity increased at the same pace, leaving operators and researchers with few instruments to understand what happens in the networks, and, on the global scale, on the Internet. Fortunately, recent advances in data science and machine learning come to the res- cue of network analysts, and allow analyses with a level of complexity and spatial/tem- poral scope not possible only 10 years ago. In my thesis, I take the perspective of an In- ternet Service Provider (ISP), and illustrate challenges and possibilities of analyzing the traffic coming from modern operational networks. I make use of big data and machine learning algorithms, and apply them to datasets coming from passive measurements of ISP and University Campus networks. The marriage between data science and network measurements is complicated by the complexity of machine learning algorithms, and by the intrinsic multi-dimensionality and variability of this kind of data. As such, my work proposes and evaluates novel techniques, inspired from popular machine learning approaches, but carefully tailored to operate with network traffic. In this thesis, I first provide a thorough characterization of the Internet traffic from 2013 to 2018. I show the most important trends in the composition of traffic and users’ habits across the last 5 years, and describe how the network infrastructure of Internet big players changed in order to support faster and larger traffic. Then, I show the chal- lenges in classifying network traffic, with particular attention to encryption and to the convergence of Internet around few big players. To overcome the limitations of classical approaches, I propose novel algorithms for traffic classification and management lever- aging machine learning techniques, and, in particular, big data approaches. Exploiting temporal correlation among network events, and benefiting from large datasets of op- erational traffic, my algorithms learn common traffic patterns of web services, and use them for (i) traffic classification and (ii) fine-grained traffic management. My proposals are always validated in experimental environments, and, then, deployed in real opera- tional networks, from which I report the most interesting findings I obtain. I also focus on the Quality of Experience (QoE) of web users, as their satisfaction represents the final objective of computer networks. Again, I show that using big data approaches, the network can achieve visibility on the quality of web browsing of users. In general, the algorithms I propose help ISPs have a detailed view of traffic that flows in their network, allowing fine-grained traffic classification and management, and real-time monitoring of users QoE

    SUTMS - Unified Threat Management Framework for Home Networks

    Get PDF
    Home networks were initially designed for web browsing and non-business critical applications. As infrastructure improved, internet broadband costs decreased, and home internet usage transferred to e-commerce and business-critical applications. Today’s home computers host personnel identifiable information and financial data and act as a bridge to corporate networks via remote access technologies like VPN. The expansion of remote work and the transition to cloud computing have broadened the attack surface for potential threats. Home networks have become the extension of critical networks and services, hackers can get access to corporate data by compromising devices attacked to broad- band routers. All these challenges depict the importance of home-based Unified Threat Management (UTM) systems. There is a need of unified threat management framework that is developed specifically for home and small networks to address emerging security challenges. In this research, the proposed Smart Unified Threat Management (SUTMS) framework serves as a comprehensive solution for implementing home network security, incorporating firewall, anti-bot, intrusion detection, and anomaly detection engines into a unified system. SUTMS is able to provide 99.99% accuracy with 56.83% memory improvements. IPS stands out as the most resource-intensive UTM service, SUTMS successfully reduces the performance overhead of IDS by integrating it with the flow detection mod- ule. The artifact employs flow analysis to identify network anomalies and categorizes encrypted traffic according to its abnormalities. SUTMS can be scaled by introducing optional functions, i.e., routing and smart logging (utilizing Apriori algorithms). The research also tackles one of the limitations identified by SUTMS through the introduction of a second artifact called Secure Centralized Management System (SCMS). SCMS is a lightweight asset management platform with built-in security intelligence that can seamlessly integrate with a cloud for real-time updates

    Strengthening Privacy and Cybersecurity through Anonymization and Big Data

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    The Technological Emergence of AutoML: A Survey of Performant Software and Applications in the Context of Industry

    Full text link
    With most technical fields, there exists a delay between fundamental academic research and practical industrial uptake. Whilst some sciences have robust and well-established processes for commercialisation, such as the pharmaceutical practice of regimented drug trials, other fields face transitory periods in which fundamental academic advancements diffuse gradually into the space of commerce and industry. For the still relatively young field of Automated/Autonomous Machine Learning (AutoML/AutonoML), that transitory period is under way, spurred on by a burgeoning interest from broader society. Yet, to date, little research has been undertaken to assess the current state of this dissemination and its uptake. Thus, this review makes two primary contributions to knowledge around this topic. Firstly, it provides the most up-to-date and comprehensive survey of existing AutoML tools, both open-source and commercial. Secondly, it motivates and outlines a framework for assessing whether an AutoML solution designed for real-world application is 'performant'; this framework extends beyond the limitations of typical academic criteria, considering a variety of stakeholder needs and the human-computer interactions required to service them. Thus, additionally supported by an extensive assessment and comparison of academic and commercial case-studies, this review evaluates mainstream engagement with AutoML in the early 2020s, identifying obstacles and opportunities for accelerating future uptake

    Jornadas Nacionales de Investigación en Ciberseguridad: actas de las VIII Jornadas Nacionales de Investigación en ciberseguridad: Vigo, 21 a 23 de junio de 2023

    Get PDF
    Jornadas Nacionales de Investigación en Ciberseguridad (8ª. 2023. Vigo)atlanTTicAMTEGA: Axencia para a modernización tecnolóxica de GaliciaINCIBE: Instituto Nacional de Cibersegurida
    corecore