47 research outputs found

    A Framework for Teaching Conceptual Modeling and Metamodeling Based on Bloom’s Revised Taxonomy of Educational Objectives

    Get PDF
    Conceptual modeling and metamodeling are vital parts in computer and information science study programs at tertiary institutions. Currently, teachers are struggling in ensuring that their teaching approach is comprehensive and in identifying application domains that motivate students, and show that the value of models exceeds pure representative means. This paper uses Bloom’s revised taxonomy of educational objectives as a foundation to define a framework for comprehensive teaching of conceptual modeling and metamodeling. The introduced framework is used to evaluate the comprehensiveness of a Smart City teaching case which has been taught at the Next-generation Enterprise: Modeling in the Digital Age Summer School. The contribution of this paper is threefold: First, a generic framework for comprehensive teaching of conceptual modeling and metamodeling is proposed; Second, a Smart City teaching case is reported; Third, the evaluation of the teaching case leads to a discussion on how to improve teaching of conceptual modeling and metamodeling in the future

    MAIA: an event-based modular architecture for intelligent agents

    Get PDF
    Online services are no longer isolated. The release of public APIs and technologies such as web hooks are allowing users and developers to access their information easily. Intelligent agents could use this information to provide a better user experience across services, connecting services with smart automatic. behaviours or actions. However, agent platforms are not prepared to easily add external sources such as web services, which hinders the usage of agents in the so-called Evented or Live Web. As a solution, this paper introduces an event-based architecture for agent systems, in accordance with the new tendencies in web programming. In particular, it is focused on personal agents that interact with several web services. With this architecture, called MAIA, connecting to new web services does not involve any modification in the platform

    Cloud application portability: an initial view.

    Get PDF
    Growing interest towards cloud application platforms has resulted in a large number of platform offerings to be already available on the market and new related products to be continuously launched. However, there are a number of challenges that prevent cloud application platforms from becoming widely adopted. One such challenge is application portability. This paper reports on an ongoing effort to explore the area of cloud application portability. We briefly examine the issue of heterogeneity in cloud platforms and highlight specific platform characteristics that may hinder the portability of cloud applications. We present some high level approaches and existing work that attempts to address this challenge. In order to narrow down the area of our exploration we have been carrying out an experiment in cross-platform application development and deployment with four prominent cloud platforms: OpenShift, Google App Engine, Heroku, and Amazon Elastic Beanstalk. We briefly discuss our initial conclusions from this ongoing experimentation

    Supporting Knowledge Elicitation and Analysis for Business Process Improvement through a Modeling Tool

    Get PDF
    Business Process Improvement (BPI) is a high priority topic for modern enterprises. However, due to the distributed knowledge, conducting BPI projects has become challenging in times of inter-organizational business networks. For supporting the elicitation, analysis, and sharing of knowledge by practitioners, we describe how semi-formally described domain knowledge on BPI and knowledge on problem-solving techniques is transformed into an implementation-oriented representation in the form of a modeling tool. Thus, we revert to the FDMM formalism (Formalism for Describing ADOxx Meta Models and Models) that permits to bridge the gap between semi-formal meta models and those that are executable on the ADOxx meta modeling platform

    Engineering Multiagent Systems - Reflections

    Get PDF
    This report documents the programme and outcomes of Dagstuhl Seminar 12342 ``Engineering multiagent Systems\u27\u27. The seminar brought together researchers from both academia and industry to identify the potential for and facilitate convergence towards standards for agent technology. As such it was particularly relevant to industrial research. A key objective of the seminar, moreover, has been to establish a road map for engineering multiagent systems. Various research areas have been identified as important topics for a research agenda with a focus on the development of multiagent systems. Among others, these include the integration of agent technology and legacy systems, component-based agent design, standards for tooling, establishing benchmarks for agent technology, and the development of frameworks for coordination and organisation of multiagent systems. This report presents a more detailed discussion of these and other research challenges that were identified. The unique atmosphere of Dagstuhl provided the perfect environment for leading researchers from a wide variety of backgrounds to discuss future directions in programming languages, tools and platforms for multiagent systems, and the road map produced by the seminar will have a timely and decisive impact on the future of this whole area of research

    Adoção da plataforma lattes como fonte de dados para caracterização de redes científicas

    Get PDF

    Analysing Microsoft Access Projects: Building a model in a Partially Observable Domain

    Get PDF
    International audienceDue to the technology evolution, every IT Company migrates their software systems at least once. Reengineering tools build system models which are used for running software analysis. These models are traditionally built from source code analysis and information accessible by data extractors (that we call such information observable). In this article we present the case of Microsoft Access projects and how this kind of project is partially observable due to proprietary storing formats. We propose a novel approach for building models that allows us to overcome this problem by reverse engineering the development environment runtime through the usage of Microsoft COM interface. We validate our approach and implementation by fully replicating 10 projects, 8 of them industrial, based only on our model information. We measure the repli-cation performance by measuring the errors during the process and completeness of the product. We measure the replication error, by tracking replication operations. We used the scope and completeness measure to enact this error. Completeness is measured by the instrumentation of a simple and scoped diff based on a third source of information. We present extensive results and interpretations. We discuss the threats to validity, the possibility of other approaches and the technological restrictions of our solution

    MEnDiGa: A Minimal Engine for Digital Games

    Get PDF
    Game engines generate high dependence of developed games on provided implementation resources. Feature modeling is a technique that captures commonalities and variabilities results of domain analysis to provide a basis for automated configuration of concrete products. This paper presents the Minimal Engine for Digital Games (MEnDiGa), a simplified collection of game assets based on game features capable of building small and casual games regardless of their implementation resources. It presents minimal features in a representative hierarchy of spatial and game elements along with basic behaviors and event support related to game logic features. It also presents modules of code to represent, interpret, and adapt game features to provide the execution of configured games in multiple game platforms. As a proof of concept, a clone of the Doodle Jump game was developed using MEnDiGa assets and compared with original game version. As a result, a new G-factor based approach for game construction is provided, which is able to separate the core of game elements from the implementation itself in an independent, reusable, and large-scale way

    Engineering scalable modelling Languages

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura: 08-11-2019Esta tesis tiene embargado el acceso al texto completo hasta el 08-05-2021Model-Driven Engineering (MDE) aims at reducing the cost of system development by raising the level of abstraction at which developers work. MDE-based solutions frequently involve the creation of Domain-Specific Modelling Languages (DSMLs). WhilethedefinitionofDSMLsandtheir(sometimesgraphical)supportingenvironments are recurring activities in MDE, they are mostly developed ad-hoc from scratch. The construction of these environments requires high expertise by developers, which currently need to spend large efforts for their construction. This thesis focusses on the development of scalable modelling environments for DSMLs based on patterns. For this purpose, we propose a catalogue of modularity patterns that can be used to extend a modelling language with services related to modularization and scalability. More specifically, these patterns allows defining model fragmentation strategies, scoping and visibility rules, model indexing services, and scoped constraints. Once the patterns have been applied to the meta-model of a modelling language, we synthesize a customized modelling environment enriched with the defined services, which become applicable to both existing monolithic legacy models and new models. A second contribution of this thesis is a set of concepts and technologies to facilitate the creation of graphical editors. For this purpose, we define heuristics which identify structures in the DSML abstract syntax, and automatically assign their diagram representation. Using this approach, developers can create a graphical representation by default from a meta-model, which later can be customised. These contributions have been implemented in two Eclipse plug-ins called EMFSplitter and EMF-Stencil. On one hand, EMF-Splitter implements the catalogue of modularity patterns and, on the other hand, EMF-Stencil supports the heuristics and the generation of a graphical modelling environment. Both tools were evaluated in different case studies to prove their versatility, efficiency, and capabilitieEl Desarrollo de Software Dirigido por Modelos (MDE, por sus siglas en inglés) tiene como objetivo reducir los costes en el desarrollo de aplicaciones, elevando el nivel de abstracciónconelqueactualmentetrabajanlosdesarrolladores. Lassolucionesbasadas en MDE frecuentemente involucran la creación de Lenguajes de Modelado de Dominio Específico (DSML, por sus siglas en inglés). Aunque la definición de los DSMLs y sus entornos gráficos de modelado son actividades recurrentes en MDE, actualmente en la mayoría de los casos se desarrollan ad-hoc desde cero. La construcción de estos entornos requiere una alta experiencia por parte de los desarrolladores, que deben realizar un gran esfuerzo para construirlos. Esta tesis se centra en el desarrollo de entornos de modelado escalables para DSML basados en patrones. Para ello, se propone un catálogo de patrones de modularidad que se pueden utilizar para extender un lenguaje de modelado con servicios relacionados con la modularización y la escalabilidad. Específicamente, los patrones permiten definir estrategias de fragmentación de modelos, reglas de alcance y visibilidad, servicios de indexación de modelos y restricciones de alcance. Una vez que los patrones se han aplicado al meta-modelo de un lenguaje de modelado, se puede generar automáticamente un entorno de modelado personalizado enriquecido con los servicios definidos, que se vuelven aplicables tanto a los modelos monolíticos existentes, como a los nuevos modelos. Una segunda contribución de esta tesis es la propuesta de conceptos y tecnologías para facilitar la creación de editores gráficos. Para ello, definimos heurísticas que identifican estructuras en la sintaxis abstracta de los DSMLs y asignan automáticamente su representación en el diagrama. Usando este enfoque, los desarrolladores pueden crear una representación gráfica por defecto a partir de un meta-modelo. Estas contribuciones se implementaron en dos plug-ins de Eclipse llamados EMFSplitter y EMF-Stencil. Por un lado, EMF-Splitter implementa el catálogo de patrones y, por otro lado, EMF-Stencil implementa las heurísticas y la generación de un entorno de modelado gráfico. Ambas herramientas se han evaluado con diferentes casos de estudio para demostrar su versatilidad, eficiencia y capacidade
    corecore