16 research outputs found

    20,000 years of societal vulnerability and adaptation to climate change in southwest Asia.

    Get PDF
    The Fertile Crescent, its hilly flanks and surrounding drylands has been a critical region for studying how climate has influenced societal change, and this review focuses on the region over the last 20,000 years. The complex social, economic, and environmental landscapes in the region today are not new phenomena and understanding their interactions requires a nuanced, multidisciplinary understanding of the past. This review builds on a history of collaboration between the social and natural palaeoscience disciplines. We provide a multidisciplinary, multiscalar perspective on the relevance of past climate, environmental, and archaeological research in assessing present day vulnerabilities and risks for the populations of southwest Asia. We discuss the complexity of palaeoclimatic data interpretation, particularly in relation to hydrology, and provide an overview of key time periods of palaeoclimatic interest. We discuss the critical role that vegetation plays in the human-climate-environment nexus and discuss the implications of the available palaeoclimate and archaeological data, and their interpretation, for palaeonarratives of the region, both climatically and socially. We also provide an overview of how modelling can improve our understanding of past climate impacts and associated change in risk to societies. We conclude by looking to future work, and identify themes of "scale" and "seasonality" as still requiring further focus. We suggest that by appreciating a given locale's place in the regional hydroscape, be it an archaeological site or palaeoenvironmental archive, more robust links to climate can be made where appropriate and interpretations drawn will demand the resolution of factors acting across multiple scales. This article is categorized under:Human Water > Water as Imagined and RepresentedScience of Water > Water and Environmental ChangeWater and Life > Nature of Freshwater Ecosystems

    Biomonitoring of heavy metals in the Eerste River catchment area

    Get PDF
    Philosophiae Doctor - PhDThe risk of increasing global pollution dictates the need to understand environmental processes and develop innovative ways to monitor pollution levels and address associated problems. In order to address this need, this study used a selection of plants leaves (Commelina benghalesis, Paspalum urvillei, Persicaria lapathifolia and Salix babylonica) as biomonitors to assess the state of the environment, more specifically the concentration of certain heavy metal pollutants (Cu, Zn, Fe, Ni, Pb and Cd) of river water and soils in the Eerste River catchment, Western Cape, South Africa

    Aspects of the biological integrity of the rivers flowing into the hyper-eutrophic Roodeplaat Dam : a comparative study

    Get PDF
    Abstract : Please refer to full text to view abstract.D.Phil. (Environmental Management

    Natural or anthropogenic variability? A long-term pattern of the zooplankton communities in an ever-changing transitional ecosystem

    Get PDF
    The Venice Lagoon is an important site belonging to the Italian Long-Term Ecological Research Network (LTER). Alongside with the increasing trend of water temperature and the relevant morphological changes, in recent years, the resident zooplankton populations have also continued to cope with the colonization by alien species, particularly the strong competitor Mnemiopsis leidyi. In this work, we compared the dynamics of the lagoon zooplankton over a period of 20 years. The physical and biological signals are analyzed and compared to evaluate the hypothesis that a slow shift in the environmental balance of the site, such as temperature increase, sea level rise (hereafter called “marinization”), and competition between species, is contributing to trigger a drift in the internal equilibrium of the resident core zooplankton. Though the copepod community does not seem to have changed its state, some important modifications of structure and assembly mechanisms have already been observed. The extension of the marine influence within the lagoon has compressed the spatial gradients of the habitat and created a greater segregation of the niches available to some typically estuarine taxa and broadened and strengthened the interactions between marine species
    corecore