671 research outputs found

    Delay-Exponent of Bilayer Anytime Code

    Full text link
    In this paper, we study the design and the delay-exponent of anytime codes over a three terminal relay network. We propose a bilayer anytime code based on anytime spatially coupled low-density parity-check (LDPC) codes and investigate the anytime characteristics through density evolution analysis. By using mathematical induction technique, we find analytical expressions of the delay-exponent for the proposed code. Through comparison, we show that the analytical delay-exponent has a close match with the delay-exponent obtained from numerical results.Comment: Accepted for presentation in ITW-2014. 5 Pages, 3 Figure

    Correlation-based Cross-layer Communication in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSN) are event based systems that rely on the collective effort of densely deployed sensor nodes continuously observing a physical phenomenon. The spatio-temporal correlation between the sensor observations and the cross-layer design advantages are significant and unique to the design of WSN. Due to the high density in the network topology, sensor observations are highly correlated in the space domain. Furthermore, the nature of the energy-radiating physical phenomenon constitutes the temporal correlation between each consecutive observation of a sensor node. This unique characteristic of WSN can be exploited through a cross-layer design of communication functionalities to improve energy efficiency of the network. In this thesis, several key elements are investigated to capture and exploit the correlation in the WSN for the realization of advanced efficient communication protocols. A theoretical framework is developed to capture the spatial and temporal correlations in WSN and to enable the development of efficient communication protocols. Based on this framework, spatial Correlation-based Collaborative Medium Access Control (CC-MAC) protocol is described, which exploits the spatial correlation in the WSN in order to achieve efficient medium access. Furthermore, the cross-layer module (XLM), which melts common protocol layer functionalities into a cross-layer module for resource-constrained sensor nodes, is developed. The cross-layer analysis of error control in WSN is then presented to enable a comprehensive comparison of error control schemes for WSN. Finally, the cross-layer packet size optimization framework is described.Ph.D.Committee Chair: Ian F. Akyildiz; Committee Member: Douglas M. Blough; Committee Member: Mostafa Ammar; Committee Member: Raghupathy Sivakumar; Committee Member: Ye (Geoffrey) L

    Traffic Congestion Detection System Using Wireless Sensor Network

    Get PDF
    Traffic congestion has been a problem for a long time. It is known that traffic congestion would cause delays, high fuel consumption and high pollution index. In order to avoid high levels of road traffic congestion, a reliable and accurate detection system is needed. By using traffic parameters such as speed and density of vehicles the road, an application of Wireless Sensor Network (WSN) could be utilised. The evaluation of the road traffic congestion detection system includes the presence of congestion and the level of congestion itself. This detection system will be implemented on a scaled-down prototype/modelling in order to test the effectiveness

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics

    Secure protocol design for mobile Ad Hoc Networks

    Get PDF
    指導教員:姜 暁

    Physical Layer Network Coding for M-QAM MIMO Systems

    Get PDF
    The aim of this thesis is to design, implement and assess a practical Physical Layer Network Coding (PNC) scheme in multi-user massive Multiple-Input Multiple-Output (MIMO) systems utilizing M-ary Quadrature Amplitude Modulation (M-QAM). PNC is a new technology that is gradually becoming one of the most sought after, as it has the potential to increase network capacity, whilst ensuring that the spectrum is also efficiently used. One of the design goals is to ascertain if combining PNC and massive MIMO is even possible. In accomplishing this goal in a multi-user cellular system with a centralized base station relaying bi-directional communication of M-QAM symbols among user equipment (UEs), a formulation of PNC mapping scheme as a function of clusters of sum and difference (SD) of transmitted symbols from the antennas of the UE pairs is pursued. The simulation results reveal that the proposed PNC scheme achieves twice the spectral efficiency in massive MIMO, without altering the latter's underlying framework and without any degradation in the bit-error-rate (BER). Having established the feasibility of combining PNC and massive MIMO, an evaluation of the proposed scheme against jamming attack is carried out and the simulation results reveal the resilience of the scheme against a barraging jamming noise signal, yet with an increase in spectral efficiency (SE). In addition, extension of the proposed PNC scheme together with Index modulation (IM), a physical layer technique that increases energy efficiency (EE) by utilizing fewer resources to transmit, is designed, implemented and evaluated. The simulation results reveal that combining PNC and IM creates a good balance between EE and SE

    Distributed space time block coding in asynchronous cooperative relay networks

    Get PDF
    The design and analysis of various distributed space time block coding schemes for asynchronous cooperative relay networks is considered in this thesis. Rayleigh frequency flat fading channels are assumed to model the links in the networks, and interference suppression techniques together with an orthogonal frequency division multiplexing type transmission approach are employed to mitigate the synchronization errors at the destination node induced by the different delays through the relay nodes. Closed-loop space time block coding is first considered in the context of decode-and-forward (regenerative) networks. In particular, quasi orthogonal and extended orthogonal coding techniques are employed for transmission from four relay nodes and parallel interference cancellation detection is exploited to mitigate synchronization errors. Availability of a direct link between the source and destination nodes is studied, and a new Alamouti space time block coding technique with parallel interference cancellation detection which does not require such a direct link connection and employs two relay nodes is proposed. Outer coding is then added to gain further improvement in end-to-end performance and amplify-and-forward (non regenerative) type networks together with distributed space time coding are considered to reduce relay node complexity. Novel detection schemes are then proposed for decode-and-forward networks with closed-loop extended orthogonal coding which reduce the computational complexity of the parallel interference cancellation. Both sub-optimum and near-optimum detectors are presented for relay nodes with single or dual antennas. End-to-end bit error rate simulations confirm the potential of the approaches and their ability to mitigate synchronization errors. A relay selection approach is also formulated which maximizes spatial diversity gain and attains robustness to timing errors. Finally, a new closed-loop distributed extended orthogonal space time block coding solution for amplify-and-forward type networks which minimizes the number of feedback bits by using a cyclic rotation phase is presented. This approach utilizes an orthogonal frequency division multiplexing type transmission structure with a cyclic prefix to mitigate synchronization errors. End-to-end bit error performance evaluations verify the efficacy of the scheme and its success in overcoming synchronization errors

    Energy and Spectral Efficient Wireless Communications

    Get PDF
    Energy and spectrum are two precious commodities for wireless communications. How to improve the energy and spectrum efficiency has become two critical issues for the designs of wireless communication systems. This dissertation is devoted to the development of energy and spectral efficient wireless communications. The developed techniques can be applied to a wide range of wireless communication systems, such as wireless sensor network (WSN) designed for structure health monitoring (SHM), medium access control (MAC) for multi-user systems, and cooperative spectrum sensing in cognitive radio systems. First, to improve the energy efficiency in SHM WSN, a new ultra low power (ULP) WSN is proposed to monitor the vibration properties of structures such as buildings, bridges, and the wings and bodies of aircrafts. The new scheme integrates energy harvesting, data sensing, and wireless communication into a unified process, and it achieves significant energy savings compared to existing WSNs. Second, a cross-layer collision tolerant (CT) MAC scheme is proposed to improve energy and spectral efficiency in a multi-user system with shared medium. When two users transmit simultaneously over a shared medium, a collision happens at the receiver. Conventional MAC schemes will discard the collided signals, which result in a waste of the precious energy and spectrum resources. In our proposed CT-MAC scheme, each user transmits multiple weighted replicas of a packet at randomly selected data slots in a frame, and the indices of the selected slots are transmitted in a special collision-free position slot at the beginning of each frame. Collisions of the data slots in the MAC layer are resolved by using multiuser detection (MUD) in the PHY layer. Compared to existing schemes, the proposed CT-MAC scheme can support more simultaneous users with a higher throughput. Third, a new cooperative spectrum sensing scheme is proposed to improve the energy and spectral efficiency of a cognitive radio network. A new Slepian-Wolf coded cooperation scheme is proposed for a cognitive radio network with two secondary users (SUs) performing cooperative spectrum sensing through a fusion center (FC). The proposed scheme can achieve significant performance gains compared to existing schemes

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies
    corecore