525 research outputs found

    Decision-theoretic planning with non-Markovian rewards

    No full text
    A decision process in which rewards depend on history rather than merely on the current state is called a decision process with non-Markovian rewards (NMRDP). In decision-theoretic planning, where many desirable behaviours are more naturally expressed a

    LTLf/LDLf Non-Markovian Rewards

    Get PDF
    In Markov Decision Processes (MDPs), the reward obtained in a state is Markovian, i.e., depends on the last state and action. This dependency makes it difficult to reward more interesting long-term behaviors, such as always closing a door after it has been opened, or providing coffee only following a request. Extending MDPs to handle non-Markovian reward functions was the subject of two previous lines of work. Both use LTL variants to specify the reward function and then compile the new model back into a Markovian model. Building on recent progress in temporal logics over finite traces, we adopt LDLf for specifying non-Markovian rewards and provide an elegant automata construction for building a Markovian model, which extends that of previous work and offers strong minimality and compositionality guarantees

    Decision-Theoretic Planning with non-Markovian Rewards

    Full text link
    A decision process in which rewards depend on history rather than merely on the current state is called a decision process with non-Markovian rewards (NMRDP). In decision-theoretic planning, where many desirable behaviours are more naturally expressed as properties of execution sequences rather than as properties of states, NMRDPs form a more natural model than the commonly adopted fully Markovian decision process (MDP) model. While the more tractable solution methods developed for MDPs do not directly apply in the presence of non-Markovian rewards, a number of solution methods for NMRDPs have been proposed in the literature. These all exploit a compact specification of the non-Markovian reward function in temporal logic, to automatically translate the NMRDP into an equivalent MDP which is solved using efficient MDP solution methods. This paper presents NMRDPP (Non-Markovian Reward Decision Process Planner), a software platform for the development and experimentation of methods for decision-theoretic planning with non-Markovian rewards. The current version of NMRDPP implements, under a single interface, a family of methods based on existing as well as new approaches which we describe in detail. These include dynamic programming, heuristic search, and structured methods. Using NMRDPP, we compare the methods and identify certain problem features that affect their performance. NMRDPPs treatment of non-Markovian rewards is inspired by the treatment of domain-specific search control knowledge in the TLPlan planner, which it incorporates as a special case. In the First International Probabilistic Planning Competition, NMRDPP was able to compete and perform well in both the domain-independent and hand-coded tracks, using search control knowledge in the latter

    Learning Task Specifications from Demonstrations

    Full text link
    Real world applications often naturally decompose into several sub-tasks. In many settings (e.g., robotics) demonstrations provide a natural way to specify the sub-tasks. However, most methods for learning from demonstrations either do not provide guarantees that the artifacts learned for the sub-tasks can be safely recombined or limit the types of composition available. Motivated by this deficit, we consider the problem of inferring Boolean non-Markovian rewards (also known as logical trace properties or specifications) from demonstrations provided by an agent operating in an uncertain, stochastic environment. Crucially, specifications admit well-defined composition rules that are typically easy to interpret. In this paper, we formulate the specification inference task as a maximum a posteriori (MAP) probability inference problem, apply the principle of maximum entropy to derive an analytic demonstration likelihood model and give an efficient approach to search for the most likely specification in a large candidate pool of specifications. In our experiments, we demonstrate how learning specifications can help avoid common problems that often arise due to ad-hoc reward composition.Comment: NIPS 201

    Anytime-Constrained Reinforcement Learning

    Full text link
    We introduce and study constrained Markov Decision Processes (cMDPs) with anytime constraints. An anytime constraint requires the agent to never violate its budget at any point in time, almost surely. Although Markovian policies are no longer sufficient, we show that there exist optimal deterministic policies augmented with cumulative costs. In fact, we present a fixed-parameter tractable reduction from anytime-constrained cMDPs to unconstrained MDPs. Our reduction yields planning and learning algorithms that are time and sample-efficient for tabular cMDPs so long as the precision of the costs is logarithmic in the size of the cMDP. However, we also show that computing non-trivial approximately optimal policies is NP-hard in general. To circumvent this bottleneck, we design provable approximation algorithms that efficiently compute or learn an arbitrarily accurate approximately feasible policy with optimal value so long as the maximum supported cost is bounded by a polynomial in the cMDP or the absolute budget. Given our hardness results, our approximation guarantees are the best possible under worst-case analysis

    Bayesian Reinforcement Learning via Deep, Sparse Sampling

    Full text link
    We address the problem of Bayesian reinforcement learning using efficient model-based online planning. We propose an optimism-free Bayes-adaptive algorithm to induce deeper and sparser exploration with a theoretical bound on its performance relative to the Bayes optimal policy, with a lower computational complexity. The main novelty is the use of a candidate policy generator, to generate long-term options in the planning tree (over beliefs), which allows us to create much sparser and deeper trees. Experimental results on different environments show that in comparison to the state-of-the-art, our algorithm is both computationally more efficient, and obtains significantly higher reward in discrete environments.Comment: Published in AISTATS 202

    Une Approche basée sur la Simulation pour l'Optimisation des Processus Décisionnels Semi-Markoviens Généralisés

    Get PDF
    Time is a crucial variable in planning and often requires special attention since it introduces a specific structure along with additional complexity, especially in the case of decision under uncertainty. In this paper, after reviewing and comparing MDP frameworks designed to deal with temporal problems, we focus on Generalized Semi-Markov Decision Processes (GSMDP) with observable time. We highlight the inherent structure and complexity of these problems and present the differences with classical reinforcement learning problems. Finally, we introduce a new simulation-based reinforcement learning method for solving GSMDP, bringing together results from simulation-based policy iteration, regression techniques and simulation theory. We illustrate our approach on a subway network control example
    • …
    corecore