2,829 research outputs found

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Learning Mechanisms for Intelligent Systems

    Get PDF

    Group decision support systems for current times: Overcoming the challenges of dispersed group decision-making

    Get PDF
    We are living a change of paradigm regarding decision-making. On the one hand, there is a growing need to make decisions in group at both professional and personal levels, on the other hand, it is increasingly difficult for decision-makers to meet at the same place and at the same time. The Web-based Group Decision Support Systems intend to overcome this limitation, allowing decision-makers to contribute to the decision process anytime and anywhere. However, they have been defined inadequately which has been compromising its success. This work discusses the current Group Decision Support Systems limitations in terms of challenges and possible impediments for their acceptance by the organizations and propose a conceptual definition of a Web-based Group Decision Support System that intends to overcome the existing limitations and help them to affirm as a reliable and useful tool. In addition, some crucial topics are addressed, such as communication and perception, that are essential and sometimes forgotten in the support of dispersed decision-makers. We concluded that there are still some limitations, mostly in terms of models and applications, that prevent the design of higher quality systems.This work was supported by the GrouPlanner Project (POCI-01-0145-FEDER-29178) and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UIDB/00319/2020 and UIDB/00760/2020

    Using mobile devices to support online collaborative learning

    Get PDF
    Mobile collaborative learning is considered the next step of on-line collaborative learning by incorporating mobility as a key and breakthrough requirement. Indeed, the current wide spread of mobile devices and wireless technologies brings an enormous potential to e-learning, in terms of ubiquity, pervasiveness, personalization, flexibility, and so on. For this reason, Mobile Computer-Supported Collaborative Learning has recently grown from a minor research field to significant research projects covering a fairly variety of formal and specially informal learning settings, from schools and universities to workplaces, museums, cities and rural areas. Much of this research has shown how mobile technology can offer new opportunities for groups of learners to collaborate inside and beyond the traditional instructor-oriented educational paradigm. However, mobile technologies, when specifically applied to collaborative learning activities, are still in its infancy and many challenges arise. In addition, current research in this domain points to highly specialized study cases, uses, and experiences in specific educational settings and thus the issues addressed in the literature are found dispersed and disconnected from each other. To this end, this paper attempts to bridge relevant aspects of mobile technologies in support for collaborative learning and provides a tighter view by means of a multidimensional approach.Peer ReviewedPostprint (published version

    Context-Aware and Adaptable eLearning Systems

    Get PDF
    The full text file attached to this record contains a copy of the thesis without the authors publications attached. The list of publications that are attached to the complete thesis can be found on pages 6-7 in the thesis.This thesis proposed solutions to some shortcomings to current eLearning architectures. The proposed DeLC architecture supports context-aware and adaptable provision of eLearning services and electronic content. The architecture is fully distributed and integrates service-oriented development with agent technology. Central to this architecture is that a node is our unit of computation (known as eLearning node) which can have purely service-oriented architecture, agent-oriented architecture or mixed architecture. Three eLeaerning Nodes have been implemented in order to demonstrate the vitality of the DeLC concept. The Mobile eLearning Node uses a three-level communication network, called InfoStations network, supporting mobile service provision. The services, displayed on this node, are to be aware of its context, gather required learning material and adapted to the learner request. This is supported trough a multi-layered hybrid (service- and agent-oriented) architecture whose kernel is implemented as middleware. For testing of the middleware a simulation environment has been developed. In addition, the DeLC development approach is proposed. The second eLearning node has been implemented as Education Portal. The architecture of this node is poorly service-oriented and it adopts a client-server architecture. In the education portal, there are incorporated education services and system services, called engines. The electronic content is kept in Digital Libraries. Furthermore, in order to facilitate content creators in DeLC, the environment Selbo2 was developed. The environment allows for creating new content, editing available content, as well as generating educational units out of preexisting standardized elements. In the last two years, the portal is used in actual education at the Faculty of Mathematics and Informatics, University of Plovdiv. The third eLearning node, known as Agent Village, exhibits a purely agent-oriented architecture. The purpose of this node is to provide intelligent assistance to the services deployed on the Education Pportal. Currently, two kinds of assistants are implemented in the node - eTesting Assistants and Refactoring eLearning Environment (ReLE). A more complex architecture, known as Education Cluster, is presented in this thesis as well. The Education Cluster incorporates two eLearning nodes, namely the Education Portal and the Agent Village. eLearning services and intelligent agents interact in the cluster

    Learning in Conscious Software Agents

    Get PDF
    • …
    corecore