338 research outputs found

    The Daily Egyptian, May 02, 2000

    Get PDF

    The Daily Egyptian, May 02, 2000

    Get PDF

    Explainable and Resource-Efficient Stream Processing Through Provenance and Scheduling

    Get PDF
    In our era of big data, information is captured at unprecedented volumes and velocities, with technologies such as Cyber-Physical Systems making quick decisions based on the processing of streaming, unbounded datasets. In such scenarios, it can be beneficial to process the data in an online manner, using the stream processing paradigm implemented by Stream Processing Engines (SPEs). While SPEs enable high-throughput, low-latency analysis, they are faced with challenges connected to evolving deployment scenarios, like the increasing use of heterogeneous, resource-constrained edge devices together with cloud resources and the increasing user expectations for usability, control, and resource-efficiency, on par with features provided by traditional databases.This thesis tackles open challenges regarding making stream processing more user-friendly, customizable, and resource-efficient. The first part outlines our work, providing high-level background information, descriptions of the research problems, and our contributions. The second part presents our three state-of-the-art frameworks for explainable data streaming using data provenance, which can help users of streaming queries to identify important data points, explain unexpected behaviors, and aid query understanding and debugging. (A) GeneaLog provides backward provenance allowing users to identify the inputs that contributed to the generation of each output of a streaming query. (B) Ananke is the first framework to provide a duplicate-free graph of live forward provenance, enabling easy bidirectional tracing of input-output relationships in streaming queries and identifying data points that have finished contributing to results. (C) Erebus is the first framework that allows users to define expectations about the results of a streaming query, validating whether these expectations are met or providing explanations in the form of why-not provenance otherwise. The third part presents techniques for execution efficiency through custom scheduling, introducing our state-of-the-art scheduling frameworks that control resource allocation and achieve user-defined performance goals. (D) Haren is an SPE-agnostic user-level scheduler that can efficiently enforce user-defined scheduling policies. (E) Lachesis is a standalone scheduling middleware that requires no changes to SPEs but, instead, directly guides the scheduling decisions of the underlying Operating System. Our extensive evaluations using real-world SPEs and workloads show that our work significantly improves over the state-of-the-art while introducing only small performance overheads

    Ontologies on the semantic web

    Get PDF
    As an informational technology, the World Wide Web has enjoyed spectacular success. In just ten years it has transformed the way information is produced, stored, and shared in arenas as diverse as shopping, family photo albums, and high-level academic research. The “Semantic Web” was touted by its developers as equally revolutionary but has not yet achieved anything like the Web’s exponential uptake. This 17 000 word survey article explores why this might be so, from a perspective that bridges both philosophy and IT

    Mining subjectively interesting patterns in rich data

    Get PDF

    Privacy Preserving User Data Publication In Social Networks

    Get PDF
    Recent trends show that the popularity of Social Networks (SNs) has been increasing rapidly. From daily communication sites to online communities, an average person\u27s daily life has become dependent on these online networks. Additionally, the number of people using at least one of the social networks have increased drastically over the years. It is estimated that by the end of the year 2020, one-third of the world\u27s population will have social accounts. Hence, user privacy protection has gained wide acclaim in the research community. It has also become evident that protection should be provided to these networks from unwanted intruders. In this dissertation, we consider data privacy on online social networks at the network level and the user level. The network-level privacy helps us to prevent information leakage to third-party users like advertisers. To achieve such privacy, we propose various schemes that combine the privacy of all the elements of a social network: node, edge, and attribute privacy by clustering the users based on their attribute similarity. We combine the concepts of k-anonymity and l-diversity to achieve user privacy. To provide user-level privacy, we consider the scenario of mobile social networks as the user location privacy is the much-compromised problem. We provide a distributed solution where users in an area come together to achieve their desired privacy constraints. We also consider the mobility of the user and the network to provide much better results
    corecore