86 research outputs found

    Mitigating DDoS attacks using OpenFlow-based software defined networking

    Get PDF
    Over the last years, Distributed Denial-of-Service (DDoS) attacks have become an increasing threat on the Internet, with recent attacks reaching traffic volumes of up to 500 Gbps. To make matters worse, web-based facilities that offer “DDoS-as-a-service” (i.e., Booters) allow for the layman to launch attacks in the order of tens of Gbps in exchange for only a few euros. A recent development in networking is the principle of Software Defined Networking (SDN), and related technologies such as OpenFlow. In SDN, the control plane and data plane of the network are decoupled. This has several advantages, such as centralized control over forwarding decisions, dynamic updating of forwarding rules, and easier and more flexible network configuration. Given these advantages, we expect SDN to be well-suited for DDoS attack mitigation. Typical mitigation solutions, however, are not built using SDN. In this paper we propose to design and to develop an OpenFlow-based mitigation architecture for DDoS attacks. The research involves looking at the applicability of OpenFlow, as well as studying existing solutions built on other technologies. The research is as yet in its beginning phase and will contribute towards a Ph.D. thesis after four years

    Improving Anycast with Measurements

    Get PDF
    Since the first Distributed Denial-of-Service (DDoS) attacks were launched, the strength of such attacks has been steadily increasing, from a few megabits per second to well into the terabit/s range. The damage that these attacks cause, mostly in terms of financial cost, has prompted researchers and operators alike to investigate and implement mitigation strategies. Examples of such strategies include local filtering appliances, Border Gateway Protocol (BGP)-based blackholing and outsourced mitigation in the form of cloud-based DDoS protection providers. Some of these strategies are more suited towards high bandwidth DDoS attacks than others. For example, using a local filtering appliance means that all the attack traffic will still pass through the owner's network. This inherently limits the maximum capacity of such a device to the bandwidth that is available. BGP Blackholing does not have such limitations, but can, as a side-effect, cause service disruptions to end-users. A different strategy, that has not attracted much attention in academia, is based on anycast. Anycast is a technique that allows operators to replicate their service across different physical locations, while keeping that service addressable with just a single IP-address. It relies on the BGP to effectively load balance users. In practice, it is combined with other mitigation strategies to allow those to scale up. Operators can use anycast to scale their mitigation capacity horizontally. Because anycast relies on BGP, and therefore in essence on the Internet itself, it can be difficult for network engineers to fine tune this balancing behavior. In this thesis, we show that that is indeed the case through two different case studies. In the first, we focus on an anycast service during normal operations, namely the Google Public DNS, and show that the routing within this service is far from optimal, for example in terms of distance between the client and the server. In the second case study, we observe the root DNS, while it is under attack, and show that even though in aggregate the bandwidth available to this service exceeds the attack we observed, clients still experienced service degradation. This degradation was caused due to the fact that some sites of the anycast service received a much higher share of traffic than others. In order for operators to improve their anycast networks, and optimize it in terms of resilience against DDoS attacks, a method to assess the actual state of such a network is required. Existing methodologies typically rely on external vantage points, such as those provided by RIPE Atlas, and are therefore limited in scale, and inherently biased in terms of distribution. We propose a new measurement methodology, named Verfploeter, to assess the characteristics of anycast networks in terms of client to Point-of-Presence (PoP) mapping, i.e. the anycast catchment. This method does not rely on external vantage points, is free of bias and offers a much higher resolution than any previous method. We validated this methodology by deploying it on a testbed that was locally developed, as well as on the B root DNS. We showed that the increased \textit{resolution} of this methodology improved our ability to assess the impact of changes in the network configuration, when compared to previous methodologies. As final validation we implement Verfploeter on Cloudflare's global-scale anycast Content Delivery Network (CDN), which has almost 200 global Points-of-Presence and an aggregate bandwidth of 30 Tbit/s. Through three real-world use cases, we demonstrate the benefits of our methodology: Firstly, we show that changes that occur when withdrawing routes from certain PoPs can be accurately mapped, and that in certain cases the effect of taking down a combination of PoPs can be calculated from individual measurements. Secondly, we show that Verfploeter largely reinstates the ping to its former glory, showing how it can be used to troubleshoot network connectivity issues in an anycast context. Thirdly, we demonstrate how accurate anycast catchment maps offer operators a new and highly accurate tool to identify and filter spoofed traffic. Where possible, we make datasets collected over the course of the research in this thesis available as open access data. The two best (open) dataset awards that were awarded for these datasets confirm that they are a valued contribution. In summary, we have investigated two large anycast services and have shown that their deployments are not optimal. We developed a novel measurement methodology, that is free of bias and is able to obtain highly accurate anycast catchment mappings. By implementing this methodology and deploying it on a global-scale anycast network we show that our method adds significant value to the fast-growing anycast CDN industry and enables new ways of detecting, filtering and mitigating DDoS attacks

    Anycast Agility: Adaptive Routing to Manage DDoS

    Get PDF
    IP Anycast is used for services such as DNS and Content Delivery Networks to provide the capacity to handle Distributed Denial-of-Service (DDoS) attacks. During a DDoS attack service operators may wish to redistribute traffic between anycast sites to take advantage of sites with unused or greater capacity. Depending on site traffic and attack size, operators may instead choose to concentrate attackers in a few sites to preserve operation in others. Previously service operators have taken these actions during attacks, but how to do so has not been described publicly. This paper meets that need, describing methods to use BGP to shift traffic when under DDoS that can build a "response playbook". Operators can use this playbook, with our new method to estimate attack size, to respond to attacks. We also explore constraints on responses seen in an anycast deployment.Comment: 18 pages, 15 figure

    Tangled:A Cooperative Anycast Testbed

    Get PDF
    Anycast routing is an area of studies that has been attracting interest of several researchers in recent years. Most anycast studies conducted in the past relied on coarse measurement data, mainly due to the lack of infrastructure where it is possible to test and collect data at same time. In this paper we present Tangled, an anycast test environment where researchers can run experiments and better understand the impacts of their proposals on a global infrastructure connected to the Internet

    Anomaly-based Filtering of Application-Layer DDoS Against DNS Authoritatives

    Get PDF
    Authoritative DNS infrastructures are at the core of the Internet ecosystem. But how resilient are typical authoritative DNS name servers against application-layer Denial-of-Service attacks? In this paper, with the help of a large country-code TLD operator, we assess the expected attack load and DoS countermeasures. We find that standard botnets or even single-homed attackers can overload the computational resources of authoritative name servers—even if redundancy such as anycast is in place. To prevent the resulting devastating DNS outages, we assess how effective upstream filters can be as a last resort. We propose an anomaly detection defense that allows both, well-behaving high-volume DNS resolvers as well as low-volume clients to continue name lookups—while blocking most of the attack traffic. Upstream ISPs or IXPs can deploy our scheme and drop attack traffic to reasonable query loads at or below 100k queries per second at a false positive rate of 1.2 % to 5.7 % (median 2.4 %)

    Stateful Anycast for DDoS Mitigation

    Get PDF
    MEng thesisDistributed denial-of-service (DDoS) attacks can easily cripple victim hosts or networks, yet effective defenses remain elusive. Normal anycast can be used to force the diffusion of attack traffic over a group of several hosts to increase the difficulty of saturating resources at or near any one of the hosts. However, because a packet sent to the anycast group may be delivered to any member, anycast does not support protocols that require a group member to maintain state (such as TCP). This makes anycast impractical for most applications of interest.This document describes the design of Stateful Anycast, a conceptual anycast-like network service based on IP anycast. Stateful Anycast is designed to support stateful sessions without losing anycasts ability to defend against DDoS attacks. Stateful Anycast employs a set of anycasted proxies to direct packets to the proper stateholder. These proxies provide DDoS protection by dropping a sessions packets upon group member request. Stateful Anycast is incrementally deployable and can scale to support many groups

    Understanding and Advancing the Status Quo of DDoS Defense

    Get PDF
    Two decades after the first distributed denial-of-service (DDoS) attack, the Internet remains challenged by DDoS attacks as they evolve. Not only is the scale of attacks larger than ever, but they are also harder to detect and mitigate. Nevertheless, the Internet's fundamental design, based on which machines are free to send traffic to any other machines, remains the same. This thesis reinvestigates the prior DDoS defense solutions to find less studied but critical issues in existing defense solutions. It proposes solutions to improve the input, design, and evaluation of DDoS defense. Specifically, we show why DDoS defense systems need a better view of the Internet's traffic at the autonomous system (AS) level. We use a novel attack to expose the inefficiencies in the existing defense systems. Finally, we reason why a defense solution needs a sound empirical evaluation and provide a framework that mimics real-world networks to facilitate DDoS defense evaluation. This dissertation includes published and unpublished co-authored materials
    • …
    corecore