23 research outputs found

    Greenfield gradual migration planning toward spectrally-spatially flexible optical networks

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThis article identifies the unavoidably required upgrade of short-term realizable elastic optical networks (EONs) operating over single-mode fibers toward spectrally-spatially flexible optical networks (SS-FONs), exploiting spatial division multiplexing (SDM) technology in order to cope with the expected mid- and long-term future traffic forecasts. Since a complete EON to SS-FON network migration overnight is unrealistic, this article proposes a gradual greenfield migration strategy employing novel heuristic planning solutions. These solutions allow identifying which network components should be SDM-capable so as to support the forecasted traffic increase at a given time. To allow transmission in an SS-FON, links should be extended with SDM-capable fibers and nodes should be equipped with SDM-capable reconfigurable optical add/drop multiplexers. Using the proposed solutions, a migration case study in a national reference core network is provided and analyzed.Peer ReviewedPostprint (author's final draft

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    Producción CientíficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de Economía, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Improving the Performance of SDM-EON Through Demand Prioritization: A Comprehensive Analysis

    Get PDF
    This paper studies the impact of demand-prioritization on Space-Division Multiplexing Elastic Optical Networks (SDM-EON). For this purpose, we solve the static Routing, Modulation Level, Spatial Mode, and Spectrum Assignment (RMLSSA) problem using 34 different explainable demand-prioritization strategies. Although previous works have applied heuristics or meta-heuristics to perform demand-prioritization, they have not focused on identifying the best prioritization strategies, their inner operation, and the implications behind their good performance by thorough profiling and impact analysis. We focus on a comprehensive analysis identifying the best explainable strategies to sort network demands in SDM-EON, considering the physical-layer impairments found in optical communications. Also, we show that simply using the common shortest path routing might lead to higher resource requirements. Extensive simulation results show that up to 8.33% capacity savings can be achieved on average by balanced routing, up to a 16.69% capacity savings can be achieved using the best performing demand-prioritization strategy compared to the worst-performing ones, the most used demand-prioritization strategy in the literature (serving demands with higher bandwidth requirements first) is not the best-performing one but the one sorting based on the path lengths, and using double-criteria strategies to break ties is key for a good performance. These results are relevant showing that a good combination of routing and demand-prioritization heuristics impact significantly on network performance. Additionally, they increase the understanding about the inner workings of good heuristics, a valuable knowledge when network settings forbid using more computationally complex approaches

    Design and optimization of optical grids and clouds

    Get PDF

    Multicast routing from a set of data centers in elastic optical networks

    Get PDF
    This paper introduces the Multi-Server Multicast (MSM) approach for Content Delivery Networks (CDNs) delivering services offered by a set of Data Centers (DCs). All DCs offer the same services. The network is an Elastic Optical Network (EON) and for a good performance, routing is performed directly at the optical layer. Optical switches have heterogeneous capacities, that is, light splitting is not available in all switches. Moreover, frequency slot conversion is not possible in any of them. We account for the degradation that optical signals suffer both in the splitting nodes, as well as across fiber links to compute their transmission reach. The optimal solution of the MSM is a set of light-hierarchies. This multicast route contains a light trail from one of the DCs to each of the destinations with respect to the optical constraints while optimizing an objective (e.g., minimizing a function). Finding such a structure is often an NP-hard problem. The light-hierarchies initiated from different DCs permit delivering the multicast session to all end-users with a better utilization of the optical resources, while also reducing multicast session latencies, as contents can be delivered from such DCs closer to end-users. We propose an Integer Linear Programming (ILP) formulation to optimally decide on which light-hierarchies should be setup. Simulation results illustrate the benefits of MSM in two reference backbone networks.Peer ReviewedPostprint (author's final draft

    In-operation planning in flexgrid optical core networks

    Get PDF
    New generation applications, such as cloud computing or video distribution, can run in a telecom cloud infrastructure where the datacenters (DCs) of telecom operators are integrated in their networks thus, increasing connections' dynamicity and resulting in time-varying traffic capacities, which might also entail changes in the traffic direction along the day. As a result, a flexible optical technology able to dynamically set-up variable-capacity connections, such as flexgrid, is needed. Nonetheless, network dynamicity might entail network performance degradation thus, requiring re-optimizing the network while it is in operation. This thesis is devoted to devise new algorithms to solve in-operation network planning problems aiming at enhancing the performance of optical networks and at studying their feasibility in experimental environments. In-operation network planning requires from an architecture enabling the deployment of algorithms that must be solved in stringent times. That architecture can be based on a Path Computation Element (PCE) or a Software Defined Networks controller. In this thesis, we assume the former split in a front-end PCE, in charge of provisioning paths and handling network events, and a specialized planning tool in the form of a back-end PCE responsible for solving in-operation planning problems. After the architecture to support in-operation planning is assessed, we focus on studying the following applications: 1) Spectrum fragmentation is one of the most important problems in optical networks. To alleviate it to some extent without traffic disruption, we propose a hitless spectrum defragmentation strategy. 2) Each connection affected by a failure can be recovered using multiple paths to increase traffic restorability at the cost of poor resource utilization. We propose re-optimizing the network after repairing the failure to aggregate and reroute those connections to release spectral resources. 3) We study two approaches to provide multicast services: establishing a point-to-multipoint connections at the optical layer and using multi-purpose virtual network topologies (VNT) to serve both unicast and multicast connectivity requests. 4) The telecom cloud infrastructure, enables placing contents closer to the users. Based on it, we propose a hierarchical content distribution architecture where VNTs permanently interconnect core DCs and metro DCs periodically synchronize contents to the core DCs. 5) When the capacity of the optical backbone network becomes exhausted, we propose using a planning tool with access to inventory and operation databases to periodically decide the equipment and connectivity to be installed at the minimum cost reducing capacity overprovisioning. 6) In multi-domain multi-operator scenarios, a broker on top of the optical domains can provision multi-domain connections. We propose performing intra-domain spectrum defragmentation when no contiguous spectrum can be found for a new connection request. 7) Packet nodes belonging to a VNT can collect and send incoming traffic monitoring data to a big data repository. We propose using the collected data to predict next period traffic and to adapt the VNT to future conditions. The methodology followed in this thesis consists in proposing a problem statement and/or a mathematical formulation for the problems identified and then, devising algorithms for solving them. Those algorithms are simulated and then, they are experimentally assessed in real test-beds. This thesis demonstrates the feasibility of performing in-operation planning in optical networks, shows that it enhances the performance of the network and validates the feasibility of its deployment in real networks. It shall be mentioned that part of the work reported in this thesis has been done within the framework of several research projects, namely IDEALIST (FP7-ICT-2011-8) and GEANT (238875) funded by the EC and SYNERGY (TEC2014-59995-R) funded by the MINECO.Les aplicacions de nova generació, com ara el cloud computing o la distribució de vídeo, es poden executar a infraestructures de telecom cloud (TCI) on operadors integren els seus datacenters (DC) a les seves xarxes. Aquestes aplicacions fan que incrementi tant la dinamicitat de les connexions, com la variabilitat de les seves capacitats en el temps, arribant a canviar de direcció al llarg del dia. Llavors, cal disposar de tecnologies òptiques flexibles, tals com flexgrid, que suportin aquesta dinamicitat a les connexions. Aquesta dinamicitat pot degradar el rendiment de la xarxa, obligant a re-optimitzar-la mentre és en operació. Aquesta tesis està dedicada a idear nous algorismes per a resoldre problemes de planificació sobre xarxes en operació (in-operation network planning) per millorar el rendiment de les xarxes òptiques i a estudiar la seva factibilitat en entorns experimentals. Aquests problemes requereixen d’una arquitectura que permeti desplegar algorismes que donin solucions en temps restrictius. L’arquitectura pot estar basada en un Element de Computació de Rutes (PCE) o en un controlador de Xarxes Definides per Software. En aquesta tesis, assumim un PCE principal encarregat d’aprovisionar rutes i gestionar esdeveniments de la xarxa, i una eina de planificació especialitzada en forma de PCE de suport per resoldre problemes d’in-operation planning. Un cop validada l’arquitectura que dona suport a in-operation planning, estudiarem les següents aplicacions: 1) La fragmentació d’espectre és un dels principals problemes a les xarxes òptiques. Proposem reduir-la en certa mesura, fent servir una estratègia que no afecta al tràfic durant la desfragmentació. 2) Cada connexió afectada per una fallada pot ser recuperada fent servir múltiples rutes incrementant la restaurabilitat de la xarxa, tot i empitjorar-ne la utilització de recursos. Proposem re-optimitzar la xarxa després de reparar una fallada per agregar i re-enrutar aquestes connexions tractant d’alliberar recursos espectrals. 3) Estudiem dues solucions per aprovisionar serveis multicast: establir connexions punt-a-multipunt sobre la xarxa òptica i utilitzar Virtual Network Topologies (VNT) multi-propòsit per a servir peticions de connectivitat tant unicast com multicast. 4) La TCI permet mantenir els continguts a prop dels usuaris. Proposem una arquitectura jeràrquica de distribució de continguts basada en la TCI, on els DC principals s’interconnecten per mitjà de VNTs permanents i els DCs metropolitans periòdicament sincronitzen continguts amb els principals. 5) Quan la capacitat de la xarxa òptica s’exhaureix, proposem utilitzar una eina de planificació amb accés a bases de dades d’inventari i operacionals per decidir periòdicament l’equipament i connectivitats a instal·lar al mínim cost i reduir el sobre-aprovisionament de capacitat. 6) En entorns multi-domini multi-operador, un broker per sobre dels dominis òptics pot aprovisionar connexions multi-domini. Proposem aplicar desfragmentació d’espectre intra-domini quan no es pot trobar espectre contigu per a noves peticions de connexió. 7) Els nodes d’una VNT poden recollir i enviar informació de monitorització de tràfic entrant a un repositori de big data. Proposem utilitzar aquesta informació per adaptar la VNT per a futures condicions. La metodologia que hem seguit en aquesta tesis consisteix en formalitzar matemàticament els problemes un cop aquests son identificats i, després, idear algorismes per a resoldre’ls. Aquests algorismes son simulats i finalment validats experimentalment en entorns reals. Aquesta tesis demostra la factibilitat d’implementar mecanismes d’in-operation planning en xarxes òptiques, mostra els beneficis que aquests aporten i valida la seva aplicabilitat en xarxes reals. Part del treball presentat en aquesta tesis ha estat dut a terme en el marc dels projectes de recerca IDEALIST (FP7-ICT-2011-8) i GEANT (238875), finançats per la CE, i SYNERGY (TEC2014-59995-R), finançat per el MINECO.Postprint (published version

    Planificación y optimización de redes ópticas en el Internet del futuro

    Get PDF
    [SPA] Las estrictas exigencias requeridas por la futura red 5G, junto a las elevadas previsiones de crecimiento de tráfico IP, principalmente cimentadas en la proliferación de numerosos servicios basados en la nube, crean un panorama futuro lleno de incógnitas desde la perspectiva de las grandes redes ópticas de telecomunicaciones. Las tareas de planificación y optimización serán esenciales para asegurar que los requisitos pueden cumplirse de una manera económicamente viable. Esta tesis trata de analizar, en primer lugar, la validez de las predicciones de crecimiento tráfico, a la luz de las actuales aplicaciones y en un escenario donde los requisitos de latencia implican la evolución de los CDNs con el despliegue de micro-datacenters. Se analizará en particular el efecto de esta evolución en el tráfico soportado por las redes ópticas troncales. Segundo, la tesis estudia opciones que permitan abordar los requisitos esperados de la red, desde tres enfoques: a) optimización en el diseño y gestión de CDNs, b) control programable de la red basado, en redes definidas por software (SDN) y con virtualización en las funciones de red (NFV) y por último, c) posible introducción de tecnología SDM (Space Division Multiplexing) para expandir la capacidad de las redes de transporte como soporte efectivo del incremento de tráfico IP. Los resultados de este trabajo concluyen, en primera instancia, que la evolución del tráfico troncal en el Internet del futuro dependerá de la naturaleza de los servicios que las aplicaciones ofrezca, siendo el balance entre el tráfico de usuario y de sincronización especialmente determinante. Por otro lado, los resultados sugieren que un acercamiento del contenido a los usuarios puede tener el efecto neto de disminuir la cantidad de tráfico soportada por las redes core, en relación con las previsiones actuales. Los casos de uso analizados en el entorno SDN-NFV determinan la necesidad de optimización para proporcionar flexibilidad y programabilidad en la migración hacia sistemas virtualizados en las redes, siendo este conjunto de funcionalidades esenciales para satisfacer los requerimientos de los futuros servicios en el paradigma 5G. Además, las pruebas de concepto presentadas avalan la optimización conjunta de recursos de red e IT para la asistencia de service chains en redes basadas en SDN-NFV. Finalmente, para las redes ópticas basadas en SDM, la propuesta presentada de restricción de canal espacial (SCC) emerge como una opción válida a implementar en ROADMs para contextos flex-grid. La validez de tal propuesta reside en la reducción de coste de implementación dada por su menor complejidad y mayor disponibilidad de equipamiento, a costa de mínimas pérdidas en rendimiento, respecto de opciones totalmente permisivas.[ENG] The strict requirements required for the future 5G network, jointly with the high growth forecasts of IP traffic, mainly based on the proliferation of cloud services, create a future panorama full of uncertainties from the perspective of large optical telecommunications networks. Planning and optimization tasks are essential to ensure that the requirements are satisfied in an economically viable manner. This thesis tries to analyze, in the first place, the validity of traffic growth predictions, in the light of current applications in a scenario where the latency requirements imply the evolution of CDNs with the deployment of micro-datacenters. In particular, the effect of this traffic evolution, supported by the optical backbone networks, will be analyzed. Second, the thesis studies some options that allow addressing the expected requirements of the network, from the perspective of three major approaches: a) optimization in the design and management of CDNs, b) programmable control of the network based on software-defined networking and with virtualization in network functions and finally, c) possible introduction of the Space Division Multiplexing (SDM) technology to expand the capacity of transport networks as effective support for the increase of IP traffic. The outcomes of this work conclude, in the first instance, that the evolution of the backbone traffic in the future Internet will depend on the nature of the services that the applications offer, being the balance between user traffic and synchronization one especially determining. On the other hand, the results suggest that place the content close to the users can have direct effect of decreasing the amount of traffic supported by the core networks, in relation to the current forecasts. The use cases analyzed in the SDN-NFV environment determine the need for optimization providing flexibility and programmability in the migration to virtualized systems in the networks. This set of functionalities are essential to satisfy the requirements of the future services in the 5G paradigm. In addition, the proof of concept presented in this thesis supports the joint optimization of network and IT resources for the assistance of service chains in networks based on SDN-NFV. Finally, for SDM-based optical networks, the proposal presented for space channel restriction (SCC) emerges as a valid option to be implemented in ROADMs for flex-grid environments. The validity of this proposal lies in the significant reduction in terms of implementation cost due to its lower complexity and the current availability of the equipment, at the expense of minimal performance degradations, compared to totally permissive options.Escuela Internacional de Doctorado de la Universidad Politécnica de CartagenaUniversidad Politécnica de CartagenaPrograma de Doctorado en Tecnologías de la Información y las Comunicaciones por la Universidad Politécnica de Cartagen

    Resilient Resource Allocation Schemes in Optical Networks

    Get PDF
    Recent studies show that deliberate malicious attacks performed by high-power sig- nals can put large amount of data under risk. We investigate the problem of sur- vivable optical networks resource provisioning scheme against malicious attacks, more specically crosstalk jamming attacks. These types of attacks may cause ser- vice disruption (or possibly service denial). We consider optical networks based on wavelength-division multiplexing (WDM) technology and two types of jamming at- tacks: in-band and out-of-band attacks. We propose an attack-aware routing and wavelength assignments (RWA) scheme to avoid or reduce the damaging effects of potential attacking signals on individual or multiple legitimate lightpaths travers- ing the same optical switches and links. An integer linear programs (ILPs) as well as heuristic approaches were proposed to solve the problem. We consider dynamic traffic where each demand is dened by its start time and a duration. Our results show that the proposed approaches were able to limit the vulnerability of lightpaths to jamming attacks. Recently, large-scale failures caused by natural disasters and/or deliberate at- tacks have left major parts of the networks damaged or disconnected. We also investigate the problem of disaster-aware WDM network resource provisioning in case of disasters. We propose an ILP and efficient heuristic to route the lightpaths in such a way that provides protection against disasters and minimize the network vi resources such as the number of wavelength links used in the network. Our models show that signicant resource savings can be achieved while accommodating users demands. In the last few years, optical networks using Space Division Multiplexing (SDM) has been proposed as a solution to the speed bottleneck anticipated in data center (DC) networks. To our knowledge the new challenges of designing such communica- tion systems have not been addressed yet. We propose an optimal approach to the problem of developing a path-protection scheme to handle communication requests in DC networks using elastic optical networking and space division multiplexing. We have formulated our problem as an ILP. We have also proposed a heuristic that can handle problems of practical size. Our simulations explore important features of our approach

    Resilient virtual topologies in optical networks and clouds

    Get PDF
    Optical networks play a crucial role in the development of Internet by providing a high speed infrastructure to cope with the rapid expansion of high bandwidth demand applications such as video, HDTV, teleconferencing, cloud computing, and so on. Network virtualization has been proposed as a key enabler for the next generation networks and the future Internet because it allows diversification the underlying architecture of Internet and lets multiple heterogeneous network architectures coexist. Physical network failures often come from natural disasters or human errors, and thus cannot be fully avoided. Today, with the increase of network traffic and the popularity of virtualization and cloud computing, due to the sharing nature of network virtualization, one single failure in the underlying physical network can affect thousands of customers and cost millions of dollars in revenue. Providing resilience for virtual network topology over optical network infrastructure thus becomes of prime importance. This thesis focuses on resilient virtual topologies in optical networks and cloud computing. We aim at finding more scalable models to solve the problem of designing survivable logical topologies for more realistic and meaningful network instances while meeting the requirements on bandwidth, security, as well as other quality of service such as recovery time. To address the scalability issue, we present a model based on a column generation decomposition. We apply the cutset theorem with a decomposition framework and lazy constraints. We are able to solve for much larger network instances than the ones in literature. We extend the model to address the survivability problem in the context of optical networks where the characteristics of optical networks such as lightpaths and wavelength continuity and traffic grooming are taken into account. We analyze and compare the bandwidth requirement between the two main approaches in providing resiliency for logical topologies. In the first approach, called optical protection, the resilient mechanism is provided by the optical layer. In the second one, called logical restoration, the resilient mechanism is done at the virtual layer. Next, we extend the survivability problem into the context of cloud computing where the major complexity arises from the anycast principle. We are able to solve the problem for much larger network instances than in the previous studies. Moreover, our model is more comprehensive that takes into account other QoS criteria, such that recovery time and delay requirement
    corecore