1,056 research outputs found

    Performance Analysis of Swarm Intelligence-Based Routing Protocol for Mobile Ad Hoc Network and Wireless Mesh Networks

    Get PDF
    Ant colonies reside in social insect societies and maintain distributed systems that present a highly structured social organization despite of the simplicity of their individuals. Ants’ algorithm belongs to the Swarm Intelligence (SI), which is proposed to find the shortest path. Among various works inspired by ant colonies, the Ant Colony Optimization (ACO) metaheuristic algorithms are the most successful and popular, e.g., AntNet, Multiple Ant Colony Optimization (MACO) and AntHocNet. But there are several shortcomings including the freezing problem of the optimum path, traffic engineering, and to link failure due to nodes mobility in wireless mobile networks. The metaheuristic and distributed route discovery for data load management in Wireless Mesh Networks (WMNs) and Mobile Ad-hoc Network (MANET) are fundamental targets of this study. Also the main aim of this research is to solve the freezing problem during optimum as well as sub-optimum path discovery process. In this research, Intelligent AntNet based Routing Algorithm (IANRA) is presented for routing in WMNs and MANET to find optimum and near-optimum paths for data packet routing. In IANRA, a source node reactively sets up a path to a destination node at the beginning of each communication. This procedure uses ant-like agents to discover optimum and alternative paths. The fundamental point in IANRA is to find optimum and sub-optimum routes by the capability of breeding of ants. This ability is continuation of route that was produced by the parent ants. The new generations of ants inherit identifier of their family, the generation number, and the routing information that their parents get during their routing procedure. By this procedure, IANRA is able to prevent some of the existing difficulties in AntNet, MACO and Ad hoc On Demand Distance Vector (AODV) routing algorithms. OMNeT++ was used to simulate the IARNA algorithm for WMNs and MANET. The results show that the IANRA routing algorithm improved the data packet delivery ratio for both WMNs and MANET. Besides, it is able to decrease average end-to-end packet delay compared to other algorithms by showing its efficiency. IANRA has decreased average end-to-end packet delay by 31.16%, 58.20% and 48.40% in MANET scenario 52.86%, 64.52% and 62.86% by increasing packet generation rate in WMNs compared to AntHocNet, AODV and B-AntNet routing algorithms respectively with increased network load. On the other hand, IANRA shows the packet delivery ratio of 91.96% and 82.77% in MANET, 97.31% and 92.25% in WMNs for low (1 packet/s) and high (20 packet/s) data load respectively

    ACO-based routing algorithms for wireless mesh networks

    Get PDF
    The popularity of Wireless Mesh Networks (WMNs) is growing exponentially in recent years, due to their flexible deployment and compatible communication features. As a key technology for next-generation wireless networking, WMNs promise an attractive future to both academic and industrial world. However, current WMNs are short in optimal routing protocols. Instead, many WMNs use the routing algorithms from ad hoc networks, which have different network features. Thus, routing becomes the most urgent issue that needs to be solved. In this thesis, routing problems in WMNs are discussed in different aspects, and then several proposed solutions in state-of-the-art are introduced with their advantages and disadvantages. Ant-In-Mesh routing protocol and the enhanced version are proposed for WMNs, inspired by traditional Ant Colony Optimization (ACO) algorithm, to deal with new challenging characters of WMNs. Periodical Mesh update is performed between neighbors, to keep the network alive. With these updated information at all the hosts, various Ants can collect the fresh routing data while they are launched for different purposes, also, the per-hop and end-to-end routing metrics can be calculated. Upon new connection requests, route discovery is carried out. After the routes are set up, proactive route maintenance is performed on each route. Several popular routing protocols and our algorithms are simulated. and compared using Qualnet. The simulation results show that our algorithms outperform the others, in terms of packet delivery ratio and end-to-end delay, as the mobility and network size increase

    A mechanized proof of loop freedom of the (untimed) AODV routing protocol

    Full text link
    The Ad hoc On-demand Distance Vector (AODV) routing protocol allows the nodes in a Mobile Ad hoc Network (MANET) or a Wireless Mesh Network (WMN) to know where to forward data packets. Such a protocol is 'loop free' if it never leads to routing decisions that forward packets in circles. This paper describes the mechanization of an existing pen-and-paper proof of loop freedom of AODV in the interactive theorem prover Isabelle/HOL. The mechanization relies on a novel compositional approach for lifting invariants to networks of nodes. We exploit the mechanization to analyse several improvements of AODV and show that Isabelle/HOL can re-establish most proof obligations automatically and identify exactly the steps that are no longer valid.Comment: The Isabelle/HOL source files, and a full proof document, are available in the Archive of Formal Proofs, at http://afp.sourceforge.net/entries/AODV.shtm

    BIGENERIČKI VIŠESTAZNI ALGORITAM ZA USMJERAVANJE ZA BEŽIČNE MREŽE

    Get PDF
    Routing is the important research issue in the development of Wireless Networks. Multipath routing allows data communication through multiple paths. On the other hand, multi-path routing does not guarantee deterministic transmission. Since one route is available for transferring data from the source node to the destination node. A bigeneric multi-path routing algorithm is planned for significant wireless mesh networks to enhance reliability, also as in impact considering with link failures. The constituted algorithm adopts the modified Dijkstra’s algorithm for searching the shortest route from the gateway to each end node. A virtual trail distinct from the regular trail is introduced to realize trail diffusion and updating. The routes used for data point’s transmission are selected based on their regular trail values, alleviating the delivery of data points through better routes. Link failures are then treated using route maintenance mechanism. This can be accomplished by increase the accuracy through the already visible route measures collected by the routing protocol. Rate adaptation algorithm is designed to compute the best rate for each wireless link. This modified conclusion aims at providing better routing and rate alternatives. Simulation results show that the proposed algorithm outperforms conventional algorithms in terms of packet delivery ratio, end-to-end delay routing operating cost.Usmjeravanje je važan istraživački problem u razvoju bežičnih mreža. Višestazno usmjeravanje omogućuje podatkovnu komunikaciju kroz više puteva. S druge strane, višestruko usmjeravanje ne jamči deterministički prijenos, budući da je jedna ruta dostupna za prijenos podataka iz izvornog čvora do odredišnog čvora. Konstituirani algoritam primjenjuje modificirani algoritam Dijkstra za traženje najkraćeg puta od pristupnika do svakog krajnjeg čvora. Algoritam prilagodbe stope dizajniran je za izračunavanje najbolje brzine za svaku bežičnu vezu. Ovaj modificirani zaključak ima za cilj pružiti bolje usmjeravanje i ocjenjivati alternative. Rezultati simulacije pokazuju da predloženi algoritam nadmašuje konvencionalne algoritme

    Secure and Reliable Routing Protocol for Transmission Data in Wireless Sensor Mesh Networks

    Get PDF
    Abstract Sensor nodes collect data from the physical world then exchange it until it reaches the intended destination. This information can be sensitive, such as battlefield surveillance. Therefore, providing secure and continuous data transmissions among sensor nodes in wireless network environments is crucial. Wireless sensor networks (WSN) have limited resources, limited computation capabilities, and the exchange of data through the air and deployment in accessible areas makes the energy, security, and routing major concerns in WSN. In this research we are looking at security issues for the above reasons. WSN is susceptible to malicious activities such as hacking and physical attacks. In general, security threats are classified depending on the layers. Physical, Transport, Network, Data link, and the Application layer. Sensor nodes can be placed in an unfriendly environments and it has lower power energy, computation and bandwidth, are exposed to a failure, and the WSN topology dynamically unstable. The recent wireless sensor protocols are intended for data communication transmission energy consumption. Therefore, many do not consider the security in WSN as much as they should and it might be vulnerable to attacks. Standard crypto systems methods aim to protect the authentication and integrity of data packets during the transmission stage between senders and receivers. In this dissertation we present Adel which is a novel routing protocol for exchanging data through wireless sensor mesh networks using Ant Colony Optimization (ACO) algorithm. Adel enhances security level during data transmission between sender party and receiver party in wireless network environment. Once the sensor nodes are deployed in a network, they need to inform their location and their data related to the security for the further communication in the network. For that purpose, ii an efficient mechanism is implemented in order to perform better communication among sensor nodes. Adel generates dynamic routing table using ACO algorithm with all the necessary information from network nodes after being deployed. Adel works with minimum routing restrictions and exploits the advantages of the three multicast routing styles, unicast, path, and mesh based. Since it takes a routing decision with a minimum number of nodes using the shortest path between the sender and the receiver nodes, Adel is applicable in static networks. Four essential performance metrics in mesh networks, network security analysis, network latency time, network packets drop, network delivery ratio, and network throughput are evaluated. Adel routing protocol has met the most important security requirements such as authorization, authentication, confidentiality, and integrity. It also grantees the absence of the cycle path problem in the network.This research reports the implementation and the performance of the proposed protocol using network simulator NS-2. The seven main parameters are considered for evaluation all experiments are security trust, packets drop, energy consumption, throughput, end to end delay and packet delivery ratio. The results show that the proposed system can significantly enhance the network security and connectivity level compared to other routing protocols. Yet, as expected, it did not do so well in energy consumption since our main goal was to provide higher level of security and connectivit

    The Application of Ant Colony Optimization

    Get PDF
    The application of advanced analytics in science and technology is rapidly expanding, and developing optimization technics is critical to this expansion. Instead of relying on dated procedures, researchers can reap greater rewards by utilizing cutting-edge optimization techniques like population-based metaheuristic models, which can quickly generate a solution with acceptable quality. Ant Colony Optimization (ACO) is one the most critical and widely used models among heuristics and meta-heuristics. This book discusses ACO applications in Hybrid Electric Vehicles (HEVs), multi-robot systems, wireless multi-hop networks, and preventive, predictive maintenance

    Self-organizing Routing Algorithm fo Wireless Sensors Networks (WSN) using Ant Colony Optimization (ACO) with Tinyos.

    Full text link
    This paper describes the basic tools to work with wireless sensors. TinyOShas a componentbased architecture which enables rapid innovation and implementation while minimizing code size as required by the severe memory constraints inherent in sensor networks. TinyOS's component library includes network protocols, distributed services, sensor drivers, and data acquisition tools ? all of which can be used asia or be further refined for a custom application. TinyOS was originally developed as a research project at the University of California Berkeley, but has since grown to have an international community of developers and users. Some algorithms concerning packet routing are shown. Incar entertainment systems can be based on wireless sensors in order to obtain information from Internet, but routing protocols must be implemented in order to avoid bottleneck problems. Ant Colony algorithms are really useful in such cases, therefore they can be embedded into the sensors to perform such routing task
    corecore