13 research outputs found

    Erasure Insertion in RS-Coded SFH MFSK Subjected to Tone Jamming and Rayleigh Fading

    No full text
    The achievable performance of Reed Solomon (RS) coded slow frequency hopping (SFH) assisted M-ary frequency shift keying (MFSK) using various erasure insertion (EI) schemes is investigated, when communicating over uncorrelated Rayleigh fading channels in the presence of multitone jamming. Three different EI schemes are considered, which are based on the output threshold test (OTT), on the ratio threshold test (RTT) and on the joint maximum output-ratio threshold test (MO-RTT). The relevant statistics of these EI schemes are investigated mathematically and based on these statistics, their performance is evaluated in the context of error-and-erasure RS decoding. It is demonstrated that the system performance can be significantly improved by using error-and-erasure decoding invoking the EI schemes considered

    Erasure Insertion in RS-Coded SFH MFSK Subjected to Tone Jamming and Rayleigh Fading

    No full text
    The achievable performance of Reed Solomon (RS) coded slow frequency hopping (SFH) assisted M-ary frequency shift keying (MFSK) using various erasure insertion (EI) schemes is investigated, when communicating over uncorrelated Rayleigh fading channels in the presence of multitone jamming. Three different EI schemes are considered, which are based on the output threshold test (OTT), on the ratio threshold test (RTT) and on the joint maximum output-ratio threshold test (MORTT). The relevant statistics of these EI schemes are investigated mathematically and based on these statistics, their performance is evaluated in the context of error-and-erasure RS decoding. It is demonstrated that the system performance can be significantly improved by using error-and-erasure decoding invoking the EI schemes considered. Index Terms—Tone jamming, OTT, RTT, MO-RTT, SFH, error-and-erasure decoding (EED)

    Integrated source and channel encoded digital communication system design study

    Get PDF
    The particular Ku-band carrier, PN despreading, and symbol synchronization strategies, which were selected for implementation in the Ku-band transponder aboard the orbiter, were assessed and evaluated from a systems performance viewpoint, verifying that system specifications were met. A study was performed of the design and implementation of tracking techniques which are suitable for incorporation into the Orbiter Ku-band communication system. Emphasis was placed on maximizing tracking accuracy and communication system flexibility while minimizing cost, weight, and system complexity of Orbiter and ground systems hardware. The payload communication study assessed the design and performance of the forward link and return link bent-pipe relay modes for attached and detached payloads. As part of this study, a design for a forward link bent-pipe was proposed which employs a residual carrier but which is tracked by the existing Costas loop

    Physical-Layer Reliability of Drones and Their Counter-Measures: Full vs. Half Duplex

    Get PDF
    In this article, we study the advantages and disadvantages that full-duplex (FD) radio technology brings to remote-controlled drone and counter-drone systems in comparison to classical half-duplex (HD) radio technology. We consider especially the physical-layer reliability perspective that has not yet been comprehensively studied. For establishing a solid analytical background, we first derive original closed-form expressions to evaluate demodulation and detection performance of frequency-hopped and frequency-shift keyed drone remote control signals under external or self-inflicted interference. The developed analytical tools are verified by comparison to simulated results and then used to study the impact that the operation mode has on the operable area of drones and effectiveness of counter-drone systems in different scenarios, linking the physical layer performance to practical safety. Analysis of the scenarios shows that FD operation compared to HD can improve the effectiveness of a counter-drone system and that in FD mode a drone can detect the attacks from the counter-drone system from a greater distance than in HD mode. However, two-way communication between the remote controller and drone in FD mode compared to HD significantly reduces the drone’s operable area when targeted by a smart counter-drone system.Peer reviewe

    Shuttle Communications and Tracking Systems Modeling and TDRSS Link Simulations Studies

    Get PDF
    An analytical simulation package (LinCsim) which allows the analytical verification of data transmission performance through TDRSS satellites was modified. The work involved the modeling of the user transponder, TDRS, TDRS ground terminal, and link dynamics for forward and return links based on the TDRSS performance specifications (4) and the critical design reviews. The scope of this effort has recently been expanded to include the effects of radio frequency interference (RFI) on the bit error rate (BER) performance of the S-band return links. The RFI environment and the modified TDRSS satellite and ground station hardware are being modeled in accordance with their description in the applicable documents

    Space Shuttle program communication and tracking systems interface analysis

    Get PDF
    The Space Shuttle Program Communications and Tracking Systems Interface Analysis began April 18, 1983. During this time, the shuttle communication and tracking systems began flight testing. Two areas of analysis documented were a result of observations made during flight tests. These analyses involved the Ku-band communication system. First, there was a detailed analysis of the interface between the solar max data format and the Ku-band communication system including the TDRSS ground station. The second analysis involving the Ku-band communication system was an analysis of the frequency lock loop of the Gunn oscillator used to generate the transmit frequency. The stability of the frequency lock loop was investigated and changes to the design were reviewed to alleviate the potential loss of data due the loop losing lock and entering the reacquisition mode. Other areas of investigation were the S-band antenna analysis and RF coverage analysis

    Multifunction Radios and Interference Suppression for Enhanced Reliability and Security of Wireless Systems

    Get PDF
    Wireless connectivity, with its relative ease of over-the-air information sharing, is a key technological enabler that facilitates many of the essential applications, such as satellite navigation, cellular communication, and media broadcasting, that are nowadays taken for granted. However, that relative ease of over-the-air communications has significant drawbacks too. On one hand, the broadcast nature of wireless communications means that one receiver can receive the superposition of multiple transmitted signals. But on the other hand, it means that multiple receivers can receive the same transmitted signal. The former leads to congestion and concerns about reliability because of the limited nature of the electromagnetic spectrum and the vulnerability to interference. The latter means that wirelessly transmitted information is inherently insecure. This thesis aims to provide insights and means for improving physical layer reliability and security of wireless communications by, in a sense, combining the two aspects above through simultaneous and same frequency transmit and receive operation. This is so as to ultimately increase the safety of environments where wireless devices function or where malicious wirelessly operated devices (e.g., remote-controlled drones) potentially raise safety concerns. Specifically, two closely related research directions are pursued. Firstly, taking advantage of in-band full-duplex (IBFD) radio technology to benefit the reliability and security of wireless communications in the form of multifunction IBFD radios. Secondly, extending the self-interference cancellation (SIC) capabilities of IBFD radios to multiradio platforms to take advantage of these same concepts on a wider scale. Within the first research direction, a theoretical analysis framework is developed and then used to comprehensively study the benefits and drawbacks of simultaneously combining signals detection and jamming on the same frequency within a single platform. Also, a practical prototype capable of such operation is implemented and its performance analyzed based on actual measurements. The theoretical and experimental analysis altogether give a concrete understanding of the quantitative benefits of simultaneous same-frequency operations over carrying out the operations in an alternating manner. Simultaneously detecting and jamming signals specifically is shown to somewhat increase the effective range of a smart jammer compared to intermittent detection and jamming, increasing its reliability. Within the second research direction, two interference mitigation methods are proposed that extend the SIC capabilities from single platform IBFD radios to those not physically connected. Such separation brings additional challenges in modeling the interference compared to the SIC problem, which the proposed methods address. These methods then allow multiple radios to intentionally generate and use interference for controlling access to the electromagnetic spectrum. Practical measurement results demonstrate that this effectively allows the use of cooperative jamming to prevent unauthorized nodes from processing any signals of interest, while authorized nodes can use interference mitigation to still access the same signals. This in turn provides security at the physical layer of wireless communications

    Modulation classification of digital communication signals

    Get PDF
    Modulation classification of digital communications signals plays an important role in both military and civilian sectors. It has the potential of replacing several receivers with one universal receiver. An automatic modulation classifier can be defined as a system that automatically identifies the modulation type of the received signal given that the signal exists and its parameters lie in a known range. This thesis addresses the need for a universal modulation classifier capable of classifying a comprehensive list of digital modulation schemes. Two classification approaches are presented: a decision-theoretic (DT) approach and a neural network (NN) approach. First classifiers are introduced that can classify ASK, PSK, and FSK signals. A decision tree is designed for the DT approach and a NN structure is formulated und trained to classify these signals. Both classifiers use the same key features derived from the intercepted signal. These features are based on the instantaneous amplitude, instantaneous phase, and instantaneous frequency of the intercepted signal, and the cumulates of its complex envelope. Threshold values for the DT approach are found from the minimum total error probabilities of the extracted key features at SNR of 20 to -5dB. The NN parameters are found by training the networks on the same data. The DT and NN classifiers are expanded to include CPM signals. Signals within the CPM class are also added to the classifiers and a separate decision tree and new NN structure are found far these signals. New key features to classify these signals are also introduced. The classifiers are then expanded further to include multiple access signals, followed by QAM, PSK8 and FSK8 signals. New features arc found to classify these signals. The final decision tree is able to accommodate a total of fifteen different modulation types. The NN structure is designed in a hierarchical fashion to optimise the classification performance of these fifteen digital modulation schemes. Both DT and NN classifiers are able to classify signals with more than 90% accuracy in the presence of additive white Gaussian within SNR ranging from 20 to 5dB. However, the performance of the NN classifier appears to be more robust as it degrades gradually at the SNRs of 0 and -5dB. At -5dB, the NN has an overall accuracy of 73.58%, whereas the DT classifier achieves only 47.3% accuracy. The overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to 84.56% for the DT classifier. Finally, the performances of these classifiers are tested in the presence of Rayleigh fading. The DT and NN classifier structures are modified to accommodate fading and again, new key features are introduced to accomplish this. With the modifications, the overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier

    TDRSS telecommunications study. Phase 1: Final report

    Get PDF
    A parametric analysis of the telecommunications support capability of the Tracking and Data Relay Satellite System (TDRSS) was performed. Emphasis was placed on maximizing support capability provided to the user while minimizing impact on the user spacecraft. This study evaluates the present TDRSS configuration as presented in the TDRSS Definition Phase Study Report, December 1973 to determine potential changes for improving the overall performance. In addition, it provides specifications of the user transponder equipment to be used in the TDRSS
    corecore