19 research outputs found

    Antifragility = Elasticity + Resilience + Machine Learning: Models and Algorithms for Open System Fidelity

    Full text link
    We introduce a model of the fidelity of open systems - fidelity being interpreted here as the compliance between corresponding figures of interest in two separate but communicating domains. A special case of fidelity is given by real-timeliness and synchrony, in which the figure of interest is the physical and the system's notion of time. Our model covers two orthogonal aspects of fidelity, the first one focusing on a system's steady state and the second one capturing that system's dynamic and behavioural characteristics. We discuss how the two aspects correspond respectively to elasticity and resilience and we highlight each aspect's qualities and limitations. Finally we sketch the elements of a new model coupling both of the first model's aspects and complementing them with machine learning. Finally, a conjecture is put forward that the new model may represent a first step towards compositional criteria for antifragile systems.Comment: Preliminary version submitted to the 1st International Workshop "From Dependable to Resilient, from Resilient to Antifragile Ambients and Systems" (ANTIFRAGILE 2014), https://sites.google.com/site/resilience2antifragile

    Systems, Resilience, and Organization: Analogies and Points of Contact with Hierarchy Theory

    Full text link
    Aim of this paper is to provide preliminary elements for discussion about the implications of the Hierarchy Theory of Evolution on the design and evolution of artificial systems and socio-technical organizations. In order to achieve this goal, a number of analogies are drawn between the System of Leibniz; the socio-technical architecture known as Fractal Social Organization; resilience and related disciplines; and Hierarchy Theory. In so doing we hope to provide elements for reflection and, hopefully, enrich the discussion on the above topics with considerations pertaining to related fields and disciplines, including computer science, management science, cybernetics, social systems, and general systems theory.Comment: To appear in the Proceedings of ANTIFRAGILE'17, 4th International Workshop on Computational Antifragility and Antifragile Engineerin

    On environments as systemic exoskeletons: Crosscutting optimizers and antifragility enablers

    Full text link
    Classic approaches to General Systems Theory often adopt an individual perspective and a limited number of systemic classes. As a result, those classes include a wide number and variety of systems that result equivalent to each other. This paper introduces a different approach: First, systems belonging to a same class are further differentiated according to five major general characteristics. This introduces a "horizontal dimension" to system classification. A second component of our approach considers systems as nested compositional hierarchies of other sub-systems. The resulting "vertical dimension" further specializes the systemic classes and makes it easier to assess similarities and differences regarding properties such as resilience, performance, and quality-of-experience. Our approach is exemplified by considering a telemonitoring system designed in the framework of Flemish project "Little Sister". We show how our approach makes it possible to design intelligent environments able to closely follow a system's horizontal and vertical organization and to artificially augment its features by serving as crosscutting optimizers and as enablers of antifragile behaviors.Comment: Accepted for publication in the Journal of Reliable Intelligent Environments. Extends conference papers [10,12,15]. The final publication is available at Springer via http://dx.doi.org/10.1007/s40860-015-0006-

    How Resilient Are Our Societies? Analyses, Models, and Preliminary Results

    Full text link
    Traditional social organizations such as those for the management of healthcare and civil defence are the result of designs and realizations that matched well with an operational context considerably different from the one we are experiencing today: A simpler world, characterized by a greater amount of resources to match less users producing lower peaks of requests. The new context reveals all the fragility of our societies: unmanageability is just around the corner unless we do not complement the "old recipes" with smarter forms of social organization. Here we analyze this problem and propose a refinement to our fractal social organizations as a model for resilient cyber-physical societies. Evidence to our claims is provided by simulating our model in terms of multi-agent systems.Comment: Paper submitted for publication in the Proc. of SERENE 2015 (http://serene.disim.univaq.it/2015/

    A framework for trustworthiness assessment based on fidelity in cyber and physical domains

    Get PDF
    We introduce a method for the assessment of trust for n-open systems based on a measurement of fidelity and present a prototypical implementation of a complaint architecture. We construct a MAPE loop which monitors the compliance between corresponding figures of interest in cyber- and physical domains; derive measures of the system's trustworthiness; and use them to plan and execute actions aiming at guaranteeing system safety and resilience. We conclude with a view on our future work

    A framework for trustworthiness assessment based on fidelity in cyber and physical domains

    Get PDF
    We introduce a method for the assessment of trust for n-open systems based on a measurement of fidelity and present a prototypical implementation of a complaint architecture. We construct a MAPE loop which monitors the compliance between corresponding figures of interest in cyber- and physical domains; derive measures of the system's trustworthiness; and use them to plan and execute actions aiming at guaranteeing system safety and resilience. We conclude with a view on our future work

    Software theory change for resilient near-complete specifications

    Get PDF
    Software evolution and its laws are essential for antifragile system design and development. In this paper we model early-stage perfective and corrective changes to software system architecture in terms of logical operations of expansion and safe contraction on a theory. As a result, we formulate an inference-based notion of property specification resilience for computational systems, intended as resistance to change. The individuated resilient core of a software system is used to characterize adaptability properties

    An HCI quality attributes taxonomy for an impact analysis to interactive systems design and improvement

    Get PDF
    In the interaction between users and systems, software quality attributes are mainly involved. When designing interfaces for human-computer interaction different alternatives can be considered in order to obtain the highest quality in an interactive system. However, quality attributes have positive and negative contribution relationships among each other, so that a change in one of them can cause a higher improvement than expected or an unwanted degradation of the system. This is the reason why in this paper we propose a taxonomy of non-functional requirements that can be assigned quality properties susceptible to be measured to propose alternatives that achieve a better quality for the systems. Quality that can be obtained by taking into account the contribution relationships among quality attributes, in order to select those alternatives that provide the biggest gain of system quality for the design and improvement of systems and software interfaces.XIII Workshop Ingeniería de Software (WIS).Red de Universidades con Carreras en Informática (RedUNCI

    Software theory change for resilient near-complete specifications

    Get PDF
    Software evolution and its laws are essential for antifragile system design and development. In this paper we model early-stage perfective and corrective changes to software system architecture in terms of logical operations of expansion and safe contraction on a theory. As a result, we formulate an inference-based notion of property specification resilience for computational systems, intended as resistance to change. The individuated resilient core of a software system is used to characterize adaptability properties
    corecore