2,329 research outputs found

    A dynamic field approach to goal inference, error detection and anticipatory action selection in human-robot collaboration

    Get PDF
    In this chapter we present results of our ongoing research on efficient and fluent human-robot collaboration that is heavily inspired by recent experimental findings about the neurocognitive mechanisms supporting joint action in humans. The robot control architecture implements the joint coordination of actions and goals as a dynamic process that integrates contextual cues, shared task knowledge and the predicted outcome of the user's motor behavior. The architecture is formalized as a coupled system of dynamic neural fields representing a distributed network of local but connected neural populations with specific functionalities. We validate the approach in a task in which a robot and a human user jointly construct a toy 'vehicle'. We show that the context-dependent mapping from action observation onto appropriate complementary actions allows the robot to cope with dynamically changing joint action situations. More specifically, the results illustrate crucial cognitive capacities for efficient and successful human-robot collaboration such as goal inference, error detection and anticipatory action selection.FCT grants POCI/V.5/A0119/2005 and CONC-REEQ/17/2001 / fp6-IST2 EU-IP Project JAST (proj. nr. 003747

    FABRIC: A Framework for the Design and Evaluation of Collaborative Robots with Extended Human Adaptation

    Full text link
    A limitation for collaborative robots (cobots) is their lack of ability to adapt to human partners, who typically exhibit an immense diversity of behaviors. We present an autonomous framework as a cobot's real-time decision-making mechanism to anticipate a variety of human characteristics and behaviors, including human errors, toward a personalized collaboration. Our framework handles such behaviors in two levels: 1) short-term human behaviors are adapted through our novel Anticipatory Partially Observable Markov Decision Process (A-POMDP) models, covering a human's changing intent (motivation), availability, and capability; 2) long-term changing human characteristics are adapted by our novel Adaptive Bayesian Policy Selection (ABPS) mechanism that selects a short-term decision model, e.g., an A-POMDP, according to an estimate of a human's workplace characteristics, such as her expertise and collaboration preferences. To design and evaluate our framework over a diversity of human behaviors, we propose a pipeline where we first train and rigorously test the framework in simulation over novel human models. Then, we deploy and evaluate it on our novel physical experiment setup that induces cognitive load on humans to observe their dynamic behaviors, including their mistakes, and their changing characteristics such as their expertise. We conduct user studies and show that our framework effectively collaborates non-stop for hours and adapts to various changing human behaviors and characteristics in real-time. That increases the efficiency and naturalness of the collaboration with a higher perceived collaboration, positive teammate traits, and human trust. We believe that such an extended human adaptation is key to the long-term use of cobots.Comment: The article is in review for publication in International Journal of Robotics Researc

    Challenges in Developing a Collaborative Robotic Assistant for Automotive Assembly Lines

    Get PDF
    Industrial robots are on the verge of emerging from their cages, and entering the final assembly to work along side humans. Towards this we are developing a collaborative robot capable of assisting humans in the final automotive assembly. Several algorithmic as well as design challenges exist when the robots enter the unpredictable, human-centric and time-critical environment of final assembly. In this work, we briefly discuss a few of these challenges along with developed solutions and proposed methodologies, and their implications for improving human-robot collaboration

    Anticipation in Human-Robot Cooperation: A Recurrent Neural Network Approach for Multiple Action Sequences Prediction

    Full text link
    Close human-robot cooperation is a key enabler for new developments in advanced manufacturing and assistive applications. Close cooperation require robots that can predict human actions and intent, and understand human non-verbal cues. Recent approaches based on neural networks have led to encouraging results in the human action prediction problem both in continuous and discrete spaces. Our approach extends the research in this direction. Our contributions are three-fold. First, we validate the use of gaze and body pose cues as a means of predicting human action through a feature selection method. Next, we address two shortcomings of existing literature: predicting multiple and variable-length action sequences. This is achieved by introducing an encoder-decoder recurrent neural network topology in the discrete action prediction problem. In addition, we theoretically demonstrate the importance of predicting multiple action sequences as a means of estimating the stochastic reward in a human robot cooperation scenario. Finally, we show the ability to effectively train the prediction model on a action prediction dataset, involving human motion data, and explore the influence of the model's parameters on its performance. Source code repository: https://github.com/pschydlo/ActionAnticipationComment: IEEE International Conference on Robotics and Automation (ICRA) 2018, Accepte

    Human-robot collaborative task planning using anticipatory brain responses

    Get PDF
    Human-robot interaction (HRI) describes scenarios in which both human and robot work as partners, sharing the same environment or complementing each other on a joint task. HRI is characterized by the need for high adaptability and flexibility of robotic systems toward their human interaction partners. One of the major challenges in HRI is task planning with dynamic subtask assignment, which is particularly challenging when subtask choices of the human are not readily accessible by the robot. In the present work, we explore the feasibility of using electroencephalogram (EEG) based neuro-cognitive measures for online robot learning of dynamic subtask assignment. To this end, we demonstrate in an experimental human subject study, featuring a joint HRI task with a UR10 robotic manipulator, the presence of EEG measures indicative of a human partner anticipating a takeover situation from human to robot or vice-versa. The present work further proposes a reinforcement learning based algorithm employing these measures as a neuronal feedback signal from the human to the robot for dynamic learning of subtask-assignment. The efficacy of this algorithm is validated in a simulation-based study. The simulation results reveal that even with relatively low decoding accuracies, successful robot learning of subtask-assignment is feasible, with around 80% choice accuracy among four subtasks within 17 minutes of collaboration. The simulation results further reveal that scalability to more subtasks is feasible and mainly accompanied with longer robot learning times. These findings demonstrate the usability of EEG-based neuro-cognitive measures to mediate the complex and largely unsolved problem of human-robot collaborative task planning
    corecore