6,785 research outputs found

    Controlling the Error on Target Motion through Real-time Mesh Adaptation: Applications to Deep Brain Stimulation

    Get PDF
    We present an error-controlled mesh refinement procedure for needle insertion simulation and apply it to the simulation of electrode implantation for deep brain stimulation, including brain shift. Our approach enables to control the error in the computation of the displacement and stress fields around the needle tip and needle shaft by suitably refining the mesh, whilst maintaining a coarser mesh in other parts of the domain. We demonstrate through academic and practical examples that our approach increases the accuracy of the displacement and stress fields around the needle without increasing the computational expense. This enables real-time simulations. The proposed methodology has direct implications to increase the accuracy and control the computational expense of the simulation of percutaneous procedures such as biopsy, brachytherapy, regional anesthesia, or cryotherapy and can be essential to the development of robotic guidance.Comment: 21 pages, 14 figure

    Neurosurgery and brain shift: review of the state of the art and main contributions of robotics

    Get PDF
    Este artículo presenta una revisión acerca de la neurocirugía, los asistentes robóticos en este tipo de procedimiento, y el tratamiento que se le da al problema del desplazamiento que sufre el tejido cerebral, incluyendo las técnicas para la obtención de imágenes médicas. Se abarca de manera especial el fenómeno del desplazamiento cerebral, comúnmente conocido como brain shift, el cual causa pérdida de referencia entre las imágenes preoperatorias y los volúmenes a tratar durante la cirugía guiada por imágenes médicas. Hipotéticamente, con la predicción y corrección del brain shift sobre el sistema de neuronavegación, se podrían planear y seguir trayectorias de mínima invasión, lo que conllevaría a minimizar el daño a los tejidos funcionales y posiblemente a reducir la morbilidad y mortalidad en estos delicados y exigentes procedimientos médicos, como por ejemplo, en la extirpación de un tumor cerebral. Se mencionan también otros inconvenientes asociados a la neurocirugía y se muestra cómo los sistemas robotizados han ayudado a solventar esta problemática. Finalmente se ponen en relieve las perspectivas futuras de esta rama de la medicina, la cual desde muchas disciplinas busca tratar las dolencias del principal órgano del ser humano.This paper presents a review about neurosurgery, robotic assistants in this type of procedure, and the approach to the problem of brain tissue displacement, including techniques for obtaining medical images. It is especially focused on the phenomenon of brain displacement, commonly known as brain shift, which causes a loss of reference between the preoperative images and the volumes to be treated during image-guided surgery. Hypothetically, with brain shift prediction and correction for the neuronavigation system, minimal invasion trajectories could be planned and shortened. This would reduce damage to functional tissues and possibly lower the morbidity and mortality in delicate and demanding medical procedures such as the removal of a brain tumor. This paper also mentions other issues associated with neurosurgery and shows the way robotized systems have helped solve these problems. Finally, it highlights the future perspectives of neurosurgery, a branch of medicine that seeks to treat the ailments of the main organ of the human body from the perspective of many disciplines

    Annotated Bibliography: Anticipation

    Get PDF

    Movement-related potentials in Parkinson's disease

    Get PDF
    To date, many different approaches have been used to study the impairment of motor function in Parkinson's disease (PD). Event-related potentials (ERPs) are averaged amplitude fluctuations of the ongoing EEG activity that are time locked to specific sensory, motor or cognitive events, and as such can be used to study different brain processes with an excellent temporal resolution. Movement-related potentials (MRPs) are ERPs associated with processes of voluntary movement preparation and execution in different paradigms. In this review we concentrate on MRPs in PD. We review studies recording the Bereitschaftspotential, the Contingent Negative Variation, and the lateralized readiness potential in PD to highlight the contributions they have made to further understanding motor deficits in PD. Possible directions for future research are also discussed

    Brain circuitry of compulsivity.

    Get PDF
    Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field.Dr. Soriano-Mas is funded by a ׳Miguel Servet׳ contract from the Carlos III Health Institute (CP10/00604). Dr. Goudriaan is supported by a VIDI Innovative Research Grant (Grant no. 91713354) funded by the Dutch Scientific Research Association (NWO-ZonMW). Dr. Alonso was funded by the Instituto de Salut Carlos III-FISPI14/00413. Dr. Nakamae received Grant support from MEXT KAKENHI (Nos. 24791223 and 26461753).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.euroneuro.2015.12.00

    Internal outset:Exploring empirical and philosophical implications of the free-energy principle

    Get PDF
    The present dissertation took the free-energy principle (FEP) as its starting point, from which we tried to draw both philosophical and empirical consequences. Both chapter 2 and 3 departed from the idea that conscious perception depends on global amplification of sensory input, and that the basal ganglia (BG) and its irrigation by dopamine play a crucial role in gating information, conscious access, and the selection of a relevant internal model given available sensory data. The BG are thought to play this role due to their modulatory influence on thalamocortical connectivity. Because much of the evidence implicating the BG in these processes in humans is correlational, we explored two ways of manipulating BG activity experimentally. Chapter 4 investigates the philosophical heritage implicitly touched on by the FEP, which provides an alternative philosophical and historical background for present-day research in cognitive neuroscience. Friston’s FEP has been received with great enthusiasm. With good reason: it not only makes the bold claim to a unifying theory of the brain, but it is presented as an a priori principle applicable to living systems in general. In this paper, we set out to show how the breadth of scope of Friston’s framework converges with the dialectics of Georg Hegel. Through an appeal to the work of Catherine Malabou, we aimed to demonstrate how Friston not only reinvigorates Hegelian dialectics from the perspective of neuroscience, but that the implicit alignment with Hegel necessitates a reading of the FEP from the perspective of Hegel’s speculative philosophy. It is this reading that moves beyond the discussion between cognitivism and enactivism surrounding Friston’s framework; beyond the question whether the organism is a secluded entity separated from its surroundings, or whether it is a dynamical system characterized by perpetual openness and mutual exchange. From a Hegelian perspective, it is the tension between both positions itself that is operative at the level of the organism; as a contradiction the organism sustains over the course of its life. Not only does the organism’s secluded existence depend on a perpetual relation with its surroundings, but the condition for there to be such a relation is the existence of a secluded entity. We intended to show how this contradiction – tension internalized – is at the center of Friston’s anticipatory organism; how it is this contradiction that grounds the perpetual process of free energy minimization. Chapter 5 is the report of a study attempting to contrast the FEP’s perspective with that of traditional cognitive neuroscience. While the FEP casts the brain as an organism’s predictive model of how its world works and will continue to work in the future in which action is afforded a central place, research on the brain’s predictive capacities remains beholden to traditional research practices in which participants are passively shown stimuli without their active involvement (as we also did in Chapters 2 and 3). The current study is an investigation into ways in which self-generated predictions may differ from externally induced predictions. Participants completed a volatile spatial attention task under both conditions (externally/cue-induced, internally/action-induced) on different days. We used the Hierarchical Gaussian Filter, an approximate Bayesian inference model, to determine subject-specific parameters of belief-updating and inferred volatility. We found preliminary evidence in support of self-generated predictions incurring a larger reaction time cost when violated compared to predictions induced by sensory cue, which translated to participants’ increased sensitivity to changes in environmental volatility. Our results suggest that internally generated predictions may be afforded more weight, but these results are complicated by session order and duration effects, as well as a lack of statistical power

    From locomotion to dance and back : exploring rhythmic sensorimotor synchronization

    Full text link
    Le rythme est un aspect important du mouvement et de la perception de l’environnement. Lorsque l’on danse, la pulsation musicale induit une activité neurale oscillatoire qui permet au système nerveux d’anticiper les évènements musicaux à venir. Le système moteur peut alors s’y synchroniser. Cette thèse développe de nouvelles techniques d’investigation des rythmes neuraux non strictement périodiques, tels que ceux qui régulent le tempo naturellement variable de la marche ou la perception rythmes musicaux. Elle étudie des réponses neurales reflétant la discordance entre ce que le système nerveux anticipe et ce qu’il perçoit, et qui sont nécessaire pour adapter la synchronisation de mouvements à un environnement variable. Elle montre aussi comment l’activité neurale évoquée par un rythme musical complexe est renforcée par les mouvements qui y sont synchronisés. Enfin, elle s’intéresse à ces rythmes neuraux chez des patients ayant des troubles de la marche ou de la conscience.Rhythms are central in human behaviours spanning from locomotion to music performance. In dance, self-sustaining and dynamically adapting neural oscillations entrain to the regular auditory inputs that is the musical beat. This entrainment leads to anticipation of forthcoming sensory events, which in turn allows synchronization of movements to the perceived environment. This dissertation develops novel technical approaches to investigate neural rhythms that are not strictly periodic, such as naturally tempo-varying locomotion movements and rhythms of music. It studies neural responses reflecting the discordance between what the nervous system anticipates and the actual timing of events, and that are critical for synchronizing movements to a changing environment. It also shows how the neural activity elicited by a musical rhythm is shaped by how we move. Finally, it investigates such neural rhythms in patient with gait or consciousness disorders
    • …
    corecore