354 research outputs found

    On Ordinal Invariants in Well Quasi Orders and Finite Antichain Orders

    Full text link
    We investigate the ordinal invariants height, length, and width of well quasi orders (WQO), with particular emphasis on width, an invariant of interest for the larger class of orders with finite antichain condition (FAC). We show that the width in the class of FAC orders is completely determined by the width in the class of WQOs, in the sense that if we know how to calculate the width of any WQO then we have a procedure to calculate the width of any given FAC order. We show how the width of WQO orders obtained via some classical constructions can sometimes be computed in a compositional way. In particular, this allows proving that every ordinal can be obtained as the width of some WQO poset. One of the difficult questions is to give a complete formula for the width of Cartesian products of WQOs. Even the width of the product of two ordinals is only known through a complex recursive formula. Although we have not given a complete answer to this question we have advanced the state of knowledge by considering some more complex special cases and in particular by calculating the width of certain products containing three factors. In the course of writing the paper we have discovered that some of the relevant literature was written on cross-purposes and some of the notions re-discovered several times. Therefore we also use the occasion to give a unified presentation of the known results

    On the Duality of Semiantichains and Unichain Coverings

    Full text link
    We study a min-max relation conjectured by Saks and West: For any two posets PP and QQ the size of a maximum semiantichain and the size of a minimum unichain covering in the product P×QP\times Q are equal. For positive we state conditions on PP and QQ that imply the min-max relation. Based on these conditions we identify some new families of posets where the conjecture holds and get easy proofs for several instances where the conjecture had been verified before. However, we also have examples showing that in general the min-max relation is false, i.e., we disprove the Saks-West conjecture.Comment: 10 pages, 3 figure

    Combinatorial symbolic powers

    Get PDF
    Symbolic powers are studied in the combinatorial context of monomial ideals. When the ideals are generated by quadratic squarefree monomials, the generators of the symbolic powers are obstructions to vertex covering in the associated graph and its blowups. As a result, perfect graphs play an important role in the theory, dual to the role played by perfect graphs in the theory of secants of monomial ideals. We use Gr\"obner degenerations as a tool to reduce questions about symbolic powers of arbitrary ideals to the monomial case. Among the applications are a new, unified approach to the Gr\"obner bases of symbolic powers of determinantal and Pfaffian ideals.Comment: 29 pages, 3 figures, Positive characteristic results incorporated into main body of pape

    Transversal Lattices

    Full text link
    A flat of a matroid is cyclic if it is a union of circuits; such flats form a lattice under inclusion and, up to isomorphism, all lattices can be obtained this way. A lattice is a Tr-lattice if all matroids whose lattices of cyclic flats are isomorphic to it are transversal. We investigate some sufficient conditions for a lattice to be a Tr-lattice; a corollary is that distributive lattices of dimension at most two are Tr-lattices. We give a necessary condition: each element in a Tr-lattice has at most two covers. We also give constructions that produce new Tr-lattices from known Tr-lattices.Comment: 12 pages; 5 figure

    Rowmotion and generalized toggle groups

    Full text link
    We generalize the notion of the toggle group, as defined in [P. Cameron-D. Fon-der-Flaass '95] and further explored in [J. Striker-N. Williams '12], from the set of order ideals of a poset to any family of subsets of a finite set. We prove structure theorems for certain finite generalized toggle groups, similar to the theorem of Cameron and Fon-der-Flaass in the case of order ideals. We apply these theorems and find other results on generalized toggle groups in the following settings: chains, antichains, and interval-closed sets of a poset; independent sets, vertex covers, acyclic subgraphs, and spanning subgraphs of a graph; matroids and convex geometries. We generalize rowmotion, an action studied on order ideals in [P. Cameron-D. Fon-der-Flaass '95] and [J. Striker-N. Williams '12], to a map we call cover-closure on closed sets of a closure operator. We show that cover-closure is bijective if and only if the set of closed sets is isomorphic to the set of order ideals of a poset, which implies rowmotion is the only bijective cover-closure map.Comment: 26 pages, 5 figures, final journal versio
    • …
    corecore