18 research outputs found

    Anti-allodynic Effect of Nefopam and Morphine in a Rat Model of Neuropathic Pain

    Get PDF
    Please cite this article as: Moini Zanjani T, Saghaei E, Ameli H, Sabetkasaei M. Anti-allodynic Effect of Nefopam and Morphine in a Rat Model of Neuropathic Pain. Novel Biomed 2013;1:16-22.Background: Neuropathic pain is a chronic pain due to a disorder in the peripheral or central nervous system with different pathophysiological mechanisms. Current treatments are not effective. Here we compared the analgesic effect of nefopam, and morphine in chronic constriction injury (CCI) model of neuropathic pain.Methods: Male wistar rat (150-200g, n=8) were divided into 3 different groups: 1- Saline-treated CCI group, 2- Saline-treated sham group, and 3- Drug-treated CCI groups. In CCI model of neuropathic pain, the left sciatic nerve was exposed and 4 loose chromic gut ligatures were placed around the nerve proximal to the trifurcation. Ketamine 60mg/kg and xylazine 10 mg/kg were used for anesthesia. Nefopam (10, 20, 30mg/kg), and morphine (1, 3, 5mg/kg) were injected 30 minutes before surgery and continued daily to day 14 post-ligation. Von Frey filaments for mechanical allodynia and acetone test for cold allodynia were respectively used as pain behavioral tests. Experiments were performed on day 0 (before surgery) and days 1, 3, 5,7,10 and 14 post injury. Behavioral studies were performed in a quiet room between 9:00 to 11:00 AM. All experiments followed the IASP guidelines on ethical standards for investigation of experimental pain in animals.Results: Nefopam (20 and 30mg/kg) blocked mechanical and cold allodynia during the experimental period, but the analgesic effects of morphine (5mg/kg) lasted for 7 days.Conclusions: It seems that nefopam could effectively reduce pain behavior compared to morphine with reduced adverse effects

    Behavioral and anatomical characterization of the bilateral sciatic nerve chronic constriction (bCCI) injury: correlation of anatomic changes and responses to cold stimuli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Unilateral constrictive sciatic nerve injury (uCCI) is a common neuropathic pain model. However, the bilateral constrictive injury (bCCI) model is less well studied, and shows unique characteristics. In the present study, we sought to correlate effects of bCCI on nocifensive responses to cold and mechanical stimuli with selected dorsal horn anatomic markers. bCCI or sham ligation of both rat sciatic nerves were followed up to 90 days of behavioural testing. Additional rats sacrificed at 15, 30 and 90 days were used for anatomic analyses. Behavioural tests included hindpaw withdrawal responses to topical acetone, cold plate testing, an operant thermal preference task and hindpaw withdrawal thresholds to mechanical probing.</p> <p>Results</p> <p>All nocifensive responses to cold increased and remained enhanced for >45 days. Mechanical withdrawal thresholds decreased for 25 days only. Densitometric analyses of immunoperoxidase staining in the superficial dorsal horn at L4-5 revealed decreased cholecystokinin (CCK) staining at all times after bCCI, decreased mu opiate receptor (MOR) staining, maximal at 15 days, increased neuropeptide Y (NPY) staining only at days 15 and 30, and increased neurokinin-1 receptor (NK-1R) staining at all time points, maximal at 15 days. Correlation analyses at 45 days post-bCCI, were significant for individual rat nocifensive responses in each cold test and CCK and NK-1R, but not for MOR or NPY.</p> <p>Conclusions</p> <p>These results confirm the usefulness of cold testing in bCCI rats, a new approach using CCI to model neuropathic pain, and suggest a potential value of studying the roles of dorsal horn CCK and substance P in chronic neuropathic pain. Compared to human subjects with neuropathic pain, responses to cold stimuli in rats with bCCI may be a useful model of neuropathic pain.</p

    Medicinal herbs in the treatment of neuropathic pain: a review

    Get PDF
    Chronic neuropathic pain is a common significant and debilitating problem that presents a major challenge to health-care. Despite the large number of available drugs, there are no curative conventional treatments for neuropathic pain. Nowadays, more attention has been focused on the herbal formulation in the field of drug discovery. Therefore, we performed an extensive review about herbal drugs and plants that exhibited protective effects on neuropathic pain. In this review, the beneficial effects of each plant in different neuropathic pain model, either in animals or in patients are reported. Moreover, the possible involved mechanisms for the protective effects are discussed. The more common plants which are used for the treatment of neuropathic pain are included as: Acorus calamus, Artemisia dracunculus, Butea monosperma, Citrullus colocynthis, Curcuma longa, Crocus sativus, Elaeagnus angustifolia, Ginkgo biloba, Mitragyna speciosa, Momordica charantia, Nigella sativa, Ocimum sanctum, Phyllanthus amarus, Pterodon pubescens Benth, Rubia cordifolia and Salvia officinalis. Furthermore, the most pathways which are known to be involved in pain relief by means of herbal remedies are anti-oxidant activity, anti-inflammatory, anti-apoptotic, neuroprotective and calcium inhibitory actions.In conclusion, this review suggests that some herbal plants can be suitable candidates for the treatment of neuropathic pain

    In Vitro and In Vivo Effects of Flavonoids on Peripheral Neuropathic Pain

    Full text link
    Neuropathic pain is a common symptom and is associated with an impaired quality of life. It is caused by the lesion or disease of the somatosensory system. Neuropathic pain syndromes can be subdivided into two categories: central and peripheral neuropathic pain. The present review highlights the peripheral neuropathic models, including spared nerve injury, spinal nerve ligation, partial sciatic nerve injury, diabetes-induced neuropathy, chemotherapy-induced neuropathy, chronic constriction injury, and related conditions. The drugs which are currently used to attenuate peripheral neuropathy, such as antidepressants, anticonvulsants, baclofen, and clonidine, are associated with adverse side effects. These negative side effects necessitate the investigation of alternative therapeutics for treating neuropathic pain conditions. Flavonoids have been reported to alleviate neuropathic pain in murine models. The present review elucidates that several flavonoids attenuate different peripheral neuropathic pain conditions at behavioral, electrophysiological, biochemical and molecular biological levels in different murine models. Therefore, the flavonoids hold future promise and can be effectively used in treating or mitigating peripheral neuropathic conditions. Thus, future studies should focus on the structure-activity relationships among different categories of flavonoids and develop therapeutic products that enhance their antineuropathic effects

    Intracellular mechanisms in chronic pain states

    Get PDF

    Neuropathic Pain

    Get PDF
    Neuropathic pain is known to be pain with nerve involvement. The intensity of which depends on the severity, pain threshold and the ability of suffers to cope. Neuropathic pain may need mono-therapy or combination of therapies to be resolved. Neuropathic pain may not resolve completely, therefore patient's compliance and understanding is essential in its management. Awareness and patient's education on targets may be of help during therapies for neuropathic pain. All chapters treated introduction, characteristics, diagnosis and randomized interventions to certain management of neuropathic pain. We acknowledge all those involve in the making of this book

    Peripheral Neuropathy

    Get PDF
    Over the last two decades we have seen extensive progress within the practice of neurology. We have refined our understanding of the etiology and pathogenesis for both peripheral and central nervous system diseases, and developed new therapeutic approaches towards these diseases. Peripheral neuropathy is a common disorder seen by many specialists and can pose a diagnostic dilemma. Many etiologies, including drugs that are used to treat other diseases, can cause peripheral neuropathy. However, the most common cause is Diabetes Mellitus, a disease all physicians encounter. Disability due to peripheral neuropathy can be severe, as the patients suffer from symptoms daily. This book addresses the advances in the diagnosis and therapies of peripheral neuropathy over the last decade. The basics of different peripheral neuropathies is briefly discussed, however, the book focuses on topics that address new approaches to peripheral neuropathies
    corecore