267 research outputs found

    Comparison of different repetitive control architectures: synthesis and comparison. Application to VSI Converters

    Get PDF
    Repetitive control is one of the most used control approaches to deal with periodic references/disturbances. It owes its properties to the inclusion of an internal model in the controller that corresponds to a periodic signal generator. However, there exist many different ways to include this internal model. This work presents a description of the different schemes by means of which repetitive control can be implemented. A complete analytic analysis and comparison is performed together with controller synthesis guidance. The voltage source inverter controller experimental results are included to illustrative conceptual developmentsPeer ReviewedPostprint (published version

    Digital repetitive control under varying frequency conditions

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialThe tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control working under varying frequency conditions. These contributions can be organized as follows: One approach that overcomes the problem of working under time varying frequency conditions is the adaptation of the controller sampling period, nevertheless, the system framework changes from Linear Time Invariant to Linear Time-Varying and the closed-loop stability can be compromised. This work presents two different methodologies aimed at analysing the system stability under these conditions. The first one uses a Linear Matrix Inequality (LMI) gridding approach which provides necessary conditions to accomplish a sufficient condition for the closed-loop Bounded Input Bounded Output stability of the system. The second one applies robust control techniques in order to analyse the stability and yields sufficient stability conditions. Both methodologies yield a frequency variation interval for which the system stability can be assured. Although several approaches exist for the stability analysis of general time-varying sampling period controllers few of them allow an integrated controller design which assures closed-loop stability under such conditions. In this thesis two design methodologies are presented, which assure stability of the repetitive control system working under varying sampling period for a given frequency variation interval: a mu-synthesis technique and a pre-compensation strategy. On a second branch, High Order Repetitive Control (HORC) is mainly used to improve the repetitive control performance robustness under disturbance/reference signals with varying or uncertain frequency. Unlike standard repetitive control, the HORC involves a weighted sum of several signal periods. With a proper selection of the associated weights, this high order function offers a characteristic frequency response in which the high gain peaks located at harmonic frequencies are extended to a wider region around the harmonics. Furthermore, the use of an odd-harmonic internal model will make the system more appropriate for applications where signals have only odd-harmonic components, as in power electronics systems. Thus an Odd-harmonic High Order Repetitive Controller suitable for applications involving odd-harmonic type signals with varying/uncertain frequency is presented. The open loop stability of internal models used in HORC and the one presented here is analysed. Additionally, as a consequence of this analysis, an Anti-Windup (AW) scheme for repetitive control is proposed. This AW proposal is based on the idea of having a small steady state tracking error and fast recovery once the system goes out of saturation. The experimental validation of these proposals has been performed in two different applications: the Roto-magnet plant and the active power filter application. The Roto-magnet plant is an experimental didactic plant used as a tool for analysing and understanding the nature of the periodic disturbances, as well as to study the different control techniques used to tackle this problem. This plant has been adopted as experimental test bench for rotational machines. On the other hand, shunt active power filters have been widely used as a way to overcome power quality problems caused by nonlinear and reactive loads. These power electronics devices are designed with the goal of obtaining a power factor close to 1 and achieving current harmonics and reactive power compensation.Award-winningPostprint (published version

    Development of a MATLAB/Simulink - Arduino environment for experimental practices in control engineering teaching

    Get PDF
    This project presents the steps followed when implementing a platform based on MATLAB/Simulink and Arduino for the restoration of digital control practices. During this project, an Arduino shield has being designed. Along with this, a web page has also been created where all the material done during all this project is available and can be freely used. So anyone interested on doing a project can have a starting point instead of starting a project from scratch, which most of times this results hard to implement. Taking all this into account, the document is structured in the following manner. The first chapter talks about the hardware used and designed. The second one explains the software used and the configurations done on the laboratory’s PCs. After that, the web page Duino-Based Learning is explained, where you can find the five projects carried out in the "Control Automàtic" subject with their corresponding results. In this section too, as an additional research, the implemented indirect adaptive control will be explained, where the parameter estimation has been done by the Recursive Least Square algorithm. The last four sections before presenting the conclusions of the work, correspond to a satisfaction questionnaire done to the teachers that have used the setup, the costs and saves of the project, the environmental impact and the planning of the project respectively

    Spatially Sampled Robust Repetitive Control

    Get PDF

    Proton beam steering control system for high precision radiotherapy at iThemba LABS : an investigation on actuator saturation constraints

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 101-106).This thesis aims at studying some of the techniques used to deal with constraints with special application to the Proton beam steering control at iThemba LABS. The steering of charged particles occurring in research plants is one of the interests of control systems. In this work an investigation of the algorithm for the control of the proton beam steering system in the radiotherapy treatment facility at iThemba LABS is conducted. This algorithm is intended to autonomously maintain the beam centered with reference to the axis of the beamline, and keep the beam front parallel to the central axis of the beamline as stated by van Tubbergh and De Kock, 2006. Furthermore, the algorithm is responsible for monitoring the distribution of the proton beam, in a plane normal to the beam travel direction

    Adaptive control of plants with input saturation: an approach for performance improvement

    Get PDF
    In this work, a new method for adaptive control of plants with input saturation is presented. The new anti-windup scheme can be shown to result in bounded closed-loop states under certain conditions on the plant and the initial closed-loop states. As an improvement in comparison to existing methods in adaptive control, a new degree of freedom is introduced in the control scheme. It allows to improve the closed-loop response when actually encountering input saturation without changing the closed-loop performance for unconstrained inputs.Diese Arbeit präsentiert eine neue Methode für die adaptive Regelung von Strecken mit Stellgrößenbegrenzung. Für das neue anti-windup Verfahren wird gezeigt, dass die Zustände des Regelkreises begrenzt bleiben, wenn dessen initiale Werte und die Regelstrecke bestimmte Bedingungen erfüllen. Eine Verbesserung im Vergleich zu existierenden Methoden wird durch die Einführung eines zusätzlichen Freiheitsgrades erzielt. Dieser erlaubt die Verbesserung der Regelgüte des geschlossenen Regelkreises, wenn das Eingangssignal sich in der Limitierung befindet, ohne diese sonst zu verändern

    Advanced control of grid-connected multilevel power electronic rectifiers

    Get PDF
    Multilevel power electronic converters have been gaining attention due to their ability to supply high amounts of power and to handle high voltage levels. In this dissertation, grid connected AC-DC rectifier application is investigated with different topologies and control scheme. At first, neutral point clamped (NPC) rectifier is employed to transfer power from the grid to the load. The NPC rectifier has two capacitors in order to build multilevel output voltage. However, it causes voltage unbalancing problem. Therefore, the new method has been proposed to regulate each capacitor voltage at the same voltage level. Experimental results show that it is effective to balance capacitor voltages of the NPC and it can improve total harmonic distortion (THD) of the grid current as a result. Furthermore, 7 voltage levels can be achieved by using hybrid multilevel rectifier which consists of an NPC and cascaded H-bridges (CHB). Because the hybrid multilevel rectifier has total 8 capacitors which are completely discharged at first, large inrush currents from the grid might cause hazards. Therefore, the paper develops a pre-charge routine for building it up to steady state operation in which unity power factor control (PFC) and load voltage control are achieved. Finally, multiple reference frame theory (MRF) is used to improve THD of the grid currents when the hybrid multilevel rectifier is connected with distorted grid voltage source. After calculating 5th harmonic of the grid current in real time, the voltage reference for the hybrid multilevel rectifier will be compensated in a feedback loop. Experimental results show validity in improving THD of the grid currents. --Abstract, page iv

    Development of Grid-Connected and Front-End Converters for Renewable Energy Systems and Electric Mobility

    Get PDF
    The spread of renewable energy sources and electric vehicles is increasing thanks to the greater awareness of the climate problems due to the large and long-lasting use of the non-renewable energy sources. The integration of renewable energy sources to the power grid, however, poses significant technical challenges, since it drastically changes its topology and nature. In fact, while the traditional power generation system is centralized, the renewable energy is distributed and intermittent. In this scenario, power converters play a central role. Power converters are the technology that enables the interconnection of different players to the electric power system. In this work, a control system for grid-connected converters has been developed. The main focus is on the current control. The most renowned current controllers, such resonant and repetitive regulators, have been studied and tested in laboratory in order to compare the performance in terms of harmonic compensation and burden of the processor. The problem of the saturation of a multi-frequency current controller has been investigated and different saturation algorithms have been proposed. The power converters have, however, wide use and the same of the method, developed for grid-connected converters can be applied to electrical motor drives with open-end windings. If a floating capacitor bridge is connected to the secondary side of the open-end stator windings, it can supply the reactive power needed by the motor and completely exploit its current capability of the power source. This feature allows the drive to obtain higher torque at higher speed, increasing therefore the output power over all the flux-weakening speed range. The floating bridge, operating as harmonic compensator, allows the inverter connected to the primary energy source to work in overmodulation and even six-step modulation, in order to further boost the performance of the drive, without compromising the quality of the phase current
    • …
    corecore