9,279 research outputs found

    Proof Relevant Corecursive Resolution

    Full text link
    Resolution lies at the foundation of both logic programming and type class context reduction in functional languages. Terminating derivations by resolution have well-defined inductive meaning, whereas some non-terminating derivations can be understood coinductively. Cycle detection is a popular method to capture a small subset of such derivations. We show that in fact cycle detection is a restricted form of coinductive proof, in which the atomic formula forming the cycle plays the role of coinductive hypothesis. This paper introduces a heuristic method for obtaining richer coinductive hypotheses in the form of Horn formulas. Our approach subsumes cycle detection and gives coinductive meaning to a larger class of derivations. For this purpose we extend resolution with Horn formula resolvents and corecursive evidence generation. We illustrate our method on non-terminating type class resolution problems.Comment: 23 pages, with appendices in FLOPS 201

    Anti-unification and Generalization: A Survey

    Full text link
    Anti-unification (AU), also known as generalization, is a fundamental operation used for inductive inference and is the dual operation to unification, an operation at the foundation of theorem proving. Interest in AU from the AI and related communities is growing, but without a systematic study of the concept, nor surveys of existing work, investigations7 often resort to developing application-specific methods that may be covered by existing approaches. We provide the first survey of AU research and its applications, together with a general framework for categorizing existing and future developments.Comment: Accepted at IJCAI 2023 - Survey Trac

    Anti-Unification of Unordered Goals

    Get PDF
    Anti-unification in logic programming refers to the process of capturing common syntactic structure among given goals, computing a single new goal that is more general called a generalization of the given goals. Finding an arbitrary common generalization for two goals is trivial, but looking for those common generalizations that are either as large as possible (called largest common generalizations) or as specific as possible (called most specific generalizations) is a non-trivial optimization problem, in particular when goals are considered to be unordered sets of atoms. In this work we provide an in-depth study of the problem by defining two different generalization relations. We formulate a characterization of what constitutes a most specific generalization in both settings. While these generalizations can be computed in polynomial time, we show that when the number of variables in the generalization needs to be minimized, the problem becomes NP-hard. We subsequently revisit an abstraction of the largest common generalization when anti-unification is based on injective variable renamings, and prove that it can be computed in polynomially bounded time

    Higher-Order Pattern Anti-Unification in Linear Time

    Get PDF
    We present a rule-based Huet’s style anti-unification algorithm for simply typed lambda-terms, which computes a least general higher-order pattern generalization. For a pair of arbitrary terms of the same type, such a generalization always exists and is unique modulo α-equivalence and variable renaming. With a minor modification, the algorithm works for untyped lambda-terms as well. The time complexity of both algorithms is linear.This research has been partially supported by the Austrian Science Fund (FWF) project SToUT (P 24087-N18), the Upper Austrian Government strategic program “Innovatives OÖ 2010plus”, the MINECO projects RASO (TIN2015-71799-C2-1-P) and HeLo (TIN2012-33042), the MINECO/FEDER UE project LoCoS (TIN2015-66293-R) and the UdG project MPCUdG2016/055.Peer Reviewe

    A Variant of Higher-Order Anti-Unification

    Get PDF
    We present a rule-based Huet's style anti-unification algorithm for simply-typed lambda-terms in η-long -normal form, which computes a least general higher-order pattern generalization. For a pair of arbitrary terms of the same type, such a generalization always exists and is unique modulo α-equivalence and variable renaming. The algorithm computes it in cubic time within linear space. It has been implemented and the code is freely available. © Alexander Baumgartner, Temur Kutsia, Jordi Levy, and Mateu Villaret; licensed under Creative Commons License CC-BY 24th International Conference on Rewriting Techniques and Applications (RTA'13).This research has been partially supported by the projects HeLo (TIN2012-33042) and TASSAT (TIN2010-20967-C04-01), by the Austrian Science Fund (FWF) with the project SToUT (P 24087-N18) and by the Generalitat de Catalunya with the grant AGAUR 2009-SGR-1434.Peer Reviewe

    Yang-Mills Theory In, Beyond, and Behind Observed Reality

    Full text link
    The character of jets is dominated by the influence of intrinsically nonabelian gauge dynamics. These proven insights into fundamental physics ramify in many directions, and are far from being exhausted. I will discuss three rewarding explorations from my own experience, whose point of departure is the hard Yang-Mills interaction, and whose end is not yet in sight. Given an insight so profound and fruitful as Yang and Mills brought us, it is in order to try to consider its broadest implications, which I attempt at the end.Comment: Solicited contribution to the volume ``Fifty Years of Yang-Mills Theory'' (WorldScientific). 12 p

    From Concept to Reality to Vision

    Full text link
    I take a brief look at three frontiers of high-energy physics, illustrating how important parts of our current thinking evolved from earlier explorations at preceding frontiers.Comment: 7 pages; Speech in acceptance of EPS prize for high energy physics, Aachen, August 200

    Contributions to artificial intelligence: the IIIA perspective

    Get PDF
    La intel·ligència artificial (IA) és un camp científic i tecnològic relativament nou dedicat a l'estudi de la intel·ligència mitjançant l'ús d'ordinadors com a eines per produir comportament intel·ligent. Inicialment, l'objectiu era essencialment científic: assolir una millor comprensió de la intel·ligència humana. Aquest objectiu ha estat, i encara és, el dels investigadors en ciència cognitiva. Dissortadament, aquest fascinant però ambiciós objectiu és encara molt lluny de ser assolit i ni tan sols podem dir que ens hi haguem acostat significativament. Afortunadament, però, la IA també persegueix un objectiu més aplicat: construir sistemes que ens resultin útils encara que la intel·ligència artificial de què estiguin dotats no tingui res a veure amb la intel·ligència humana i, per tant, aquests sistemes no ens proporcionarien necessàriament informació útil sobre la naturalesa de la intel·ligència humana. Aquest objectiu, que s'emmarca més aviat dins de l'àmbit de l'enginyeria, és actualment el que predomina entre els investigadors en IA i ja ha donat resultats impresionants, tan teòrics com aplicats, en moltíssims dominis d'aplicació. A més, avui dia, els productes i les aplicacions al voltant de la IA representen un mercat anual de desenes de milers de milions de dòlars. Aquest article resumeix les principals contribucions a la IA fetes pels investigadors de l'Institut d'Investigació en Intel·ligència Artificial del Consell Superior d'Investigacions Científiques durant els darrers cinc anys.Artificial intelligence is a relatively new scientific and technological field which studies the nature of intelligence by using computers to produce intelligent behaviour. Initially, the main goal was a purely scientific one, understanding human intelligence, and this remains the aim of cognitive scientists. Unfortunately, such an ambitious and fascinating goal is not only far from being achieved but has yet to be satisfactorily approached. Fortunately, however, artificial intelligence also has an engineering goal: building systems that are useful to people even if the intelligence of such systems has no relation whatsoever with human intelligence, and therefore being able to build them does not necessarily provide any insight into the nature of human intelligence. This engineering goal has become the predominant one among artificial intelligence researchers and has produced impressive results, ranging from knowledge-based systems to autonomous robots, that have been applied to many different domains. Furthermore, artificial intelligence products and services today represent an annual market of tens of billions of dollars worldwide. This article summarizes the main contributions to the field of artificial intelligence made at the IIIA-CSIC (Artificial Intelligence Research Institute of the Spanish Scientific Research Council) over the last five years
    corecore