1,001 research outputs found

    On the Learning of Deep Local Features for Robust Face Spoofing Detection

    Full text link
    Biometrics emerged as a robust solution for security systems. However, given the dissemination of biometric applications, criminals are developing techniques to circumvent them by simulating physical or behavioral traits of legal users (spoofing attacks). Despite face being a promising characteristic due to its universality, acceptability and presence of cameras almost everywhere, face recognition systems are extremely vulnerable to such frauds since they can be easily fooled with common printed facial photographs. State-of-the-art approaches, based on Convolutional Neural Networks (CNNs), present good results in face spoofing detection. However, these methods do not consider the importance of learning deep local features from each facial region, even though it is known from face recognition that each facial region presents different visual aspects, which can also be exploited for face spoofing detection. In this work we propose a novel CNN architecture trained in two steps for such task. Initially, each part of the neural network learns features from a given facial region. Afterwards, the whole model is fine-tuned on the whole facial images. Results show that such pre-training step allows the CNN to learn different local spoofing cues, improving the performance and the convergence speed of the final model, outperforming the state-of-the-art approaches

    Deep convolutional neural networks for face and iris presentation attack detection: Survey and case study

    Full text link
    Biometric presentation attack detection is gaining increasing attention. Users of mobile devices find it more convenient to unlock their smart applications with finger, face or iris recognition instead of passwords. In this paper, we survey the approaches presented in the recent literature to detect face and iris presentation attacks. Specifically, we investigate the effectiveness of fine tuning very deep convolutional neural networks to the task of face and iris antispoofing. We compare two different fine tuning approaches on six publicly available benchmark datasets. Results show the effectiveness of these deep models in learning discriminative features that can tell apart real from fake biometric images with very low error rate. Cross-dataset evaluation on face PAD showed better generalization than state of the art. We also performed cross-dataset testing on iris PAD datasets in terms of equal error rate which was not reported in literature before. Additionally, we propose the use of a single deep network trained to detect both face and iris attacks. We have not noticed accuracy degradation compared to networks trained for only one biometric separately. Finally, we analyzed the learned features by the network, in correlation with the image frequency components, to justify its prediction decision.Comment: A preprint of a paper accepted by IET Biometrics journal and is subject to Institution of Engineering and Technology Copyrigh

    Audio-replay attack detection countermeasures

    Full text link
    This paper presents the Speech Technology Center (STC) replay attack detection systems proposed for Automatic Speaker Verification Spoofing and Countermeasures Challenge 2017. In this study we focused on comparison of different spoofing detection approaches. These were GMM based methods, high level features extraction with simple classifier and deep learning frameworks. Experiments performed on the development and evaluation parts of the challenge dataset demonstrated stable efficiency of deep learning approaches in case of changing acoustic conditions. At the same time SVM classifier with high level features provided a substantial input in the efficiency of the resulting STC systems according to the fusion systems results.Comment: 11 pages, 3 figures, accepted for Specom 201

    Face De-Spoofing: Anti-Spoofing via Noise Modeling

    Full text link
    Many prior face anti-spoofing works develop discriminative models for recognizing the subtle differences between live and spoof faces. Those approaches often regard the image as an indivisible unit, and process it holistically, without explicit modeling of the spoofing process. In this work, motivated by the noise modeling and denoising algorithms, we identify a new problem of face de-spoofing, for the purpose of anti-spoofing: inversely decomposing a spoof face into a spoof noise and a live face, and then utilizing the spoof noise for classification. A CNN architecture with proper constraints and supervisions is proposed to overcome the problem of having no ground truth for the decomposition. We evaluate the proposed method on multiple face anti-spoofing databases. The results show promising improvements due to our spoof noise modeling. Moreover, the estimated spoof noise provides a visualization which helps to understand the added spoof noise by each spoof medium.Comment: To appear in ECCV 2018. The first two authors contributed equally to this wor

    Deep Transfer Across Domains for Face Anti-spoofing

    Full text link
    A practical face recognition system demands not only high recognition performance, but also the capability of detecting spoofing attacks. While emerging approaches of face anti-spoofing have been proposed in recent years, most of them do not generalize well to new database. The generalization ability of face anti-spoofing needs to be significantly improved before they can be adopted by practical application systems. The main reason for the poor generalization of current approaches is the variety of materials among the spoofing devices. As the attacks are produced by putting a spoofing display (e.t., paper, electronic screen, forged mask) in front of a camera, the variety of spoofing materials can make the spoofing attacks quite different. Furthermore, the background/lighting condition of a new environment can make both the real accesses and spoofing attacks different. Another reason for the poor generalization is that limited labeled data is available for training in face anti-spoofing. In this paper, we focus on improving the generalization ability across different kinds of datasets. We propose a CNN framework using sparsely labeled data from the target domain to learn features that are invariant across domains for face anti-spoofing. Experiments on public-domain face spoofing databases show that the proposed method significantly improve the cross-dataset testing performance only with a small number of labeled samples from the target domain.Comment: 8 pages; 3 figures; 2 table

    Face Presentation Attack Detection in Learned Color-liked Space

    Full text link
    Face presentation attack detection (PAD) has become a thorny problem for biometric systems and numerous countermeasures have been proposed to address it. However, majority of them directly extract feature descriptors and distinguish fake faces from the real ones in existing color spaces (e.g. RGB, HSV and YCbCr). Unfortunately, it is unknown for us which color space is the best or how to combine different spaces together. To make matters worse, the real and fake faces are overlapped in existing color spaces. So, in this paper, a learned distinguishable color-liked space is generated to deal with the problem of face PAD. More specifically, we present an end-to-end deep learning network that can map existing color spaces to a new learned color-liked space. Inspired by the generator of generative adversarial network (GAN), the proposed network consists of a space generator and a feature extractor. When training the color-liked space, a new triplet combination mechanism of points-to-center is explored to maximize interclass distance and minimize intraclass distance, and also keep a safe margin between the real and presented fake faces. Extensive experiments on two standard face PAD databases, i.e., Relay-Attack and OULU-NPU, indicate that our proposed color-liked space analysis based countermeasure significantly outperforms the state-of-the-art methods and show excellent generalization capability

    Using Deep Learning for Detecting Spoofing Attacks on Speech Signals

    Full text link
    It is well known that speaker verification systems are subject to spoofing attacks. The Automatic Speaker Verification Spoofing and Countermeasures Challenge -- ASVSpoof2015 -- provides a standard spoofing database, containing attacks based on synthetic speech, along with a protocol for experiments. This paper describes CPqD's systems submitted to the ASVSpoof2015 Challenge, based on deep neural networks, working both as a classifier and as a feature extraction module for a GMM and a SVM classifier. Results show the validity of this approach, achieving less than 0.5\% EER for known attacks

    Improving Face Anti-Spoofing by 3D Virtual Synthesis

    Full text link
    Face anti-spoofing is crucial for the security of face recognition systems. Learning based methods especially deep learning based methods need large-scale training samples to reduce overfitting. However, acquiring spoof data is very expensive since the live faces should be re-printed and re-captured in many views. In this paper, we present a method to synthesize virtual spoof data in 3D space to alleviate this problem. Specifically, we consider a printed photo as a flat surface and mesh it into a 3D object, which is then randomly bent and rotated in 3D space. Afterward, the transformed 3D photo is rendered through perspective projection as a virtual sample. The synthetic virtual samples can significantly boost the anti-spoofing performance when combined with a proposed data balancing strategy. Our promising results open up new possibilities for advancing face anti-spoofing using cheap and large-scale synthetic data.Comment: Accepted to ICB 201

    FeatherNets: Convolutional Neural Networks as Light as Feather for Face Anti-spoofing

    Full text link
    Face Anti-spoofing gains increased attentions recently in both academic and industrial fields. With the emergence of various CNN based solutions, the multi-modal(RGB, depth and IR) methods based CNN showed better performance than single modal classifiers. However, there is a need for improving the performance and reducing the complexity. Therefore, an extreme light network architecture(FeatherNet A/B) is proposed with a streaming module which fixes the weakness of Global Average Pooling and uses less parameters. Our single FeatherNet trained by depth image only, provides a higher baseline with 0.00168 ACER, 0.35M parameters and 83M FLOPS. Furthermore, a novel fusion procedure with ``ensemble + cascade'' structure is presented to satisfy the performance preferred use cases. Meanwhile, the MMFD dataset is collected to provide more attacks and diversity to gain better generalization. We use the fusion method in the Face Anti-spoofing Attack Detection Challenge@CVPR2019 and got the result of 0.0013(ACER), 0.999(TPR@FPR=10e-2), 0.998(TPR@FPR=10e-3) and 0.9814(TPR@FPR=10e-4).Comment: 10 pages;6 figure

    FaceSpoof Buster: a Presentation Attack Detector Based on Intrinsic Image Properties and Deep Learning

    Full text link
    Nowadays, the adoption of face recognition for biometric authentication systems is usual, mainly because this is one of the most accessible biometric modalities. Techniques that rely on trespassing these kind of systems by using a forged biometric sample, such as a printed paper or a recorded video of a genuine access, are known as presentation attacks, but may be also referred in the literature as face spoofing. Presentation attack detection is a crucial step for preventing this kind of unauthorized accesses into restricted areas and/or devices. In this paper, we propose a novel approach which relies in a combination between intrinsic image properties and deep neural networks to detect presentation attack attempts. Our method explores depth, salience and illumination maps, associated with a pre-trained Convolutional Neural Network in order to produce robust and discriminant features. Each one of these properties are individually classified and, in the end of the process, they are combined by a meta learning classifier, which achieves outstanding results on the most popular datasets for PAD. Results show that proposed method is able to overpass state-of-the-art results in an inter-dataset protocol, which is defined as the most challenging in the literature.Comment: 7 pages, 1 figure, 7 table
    corecore