99,501 research outputs found

    Anti-Powers in Infinite Words

    Get PDF
    In combinatorics of words, a concatenation of kk consecutive equal blocks is called a power of order kk. In this paper we take a different point of view and define an anti-power of order kk as a concatenation of kk consecutive pairwise distinct blocks of the same length. As a main result, we show that every infinite word contains powers of any order or anti-powers of any order. That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a stronger result, which relates the density of anti-powers to the existence of a factor that occurs with arbitrary exponent. As a consequence, we show that in every aperiodic uniformly recurrent word, anti-powers of every order begin at every position. We further show that every infinite word avoiding anti-powers of order 33 is ultimately periodic, while there exist aperiodic words avoiding anti-powers of order 44. We also show that there exist aperiodic recurrent words avoiding anti-powers of order 66.Comment: Revision submitted to Journal of Combinatorial Theory Series

    Anti-Powers in Infinite Words

    Get PDF
    In combinatorics of words, a concatenation of k consecutive equal blocks is called a power of order k. In this paper we take a different point of view and define an anti-power of order k as a concatenation of k consecutive pairwise distinct blocks of the same length. As a main result, we show that every infinite word contains powers of any order or anti-powers of any order. That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a stronger result, which relates the density of anti-powers to the existence of a factor that occurs with arbitrary exponent. From these results, we derive that at every position of an aperiodic uniformly recurrent word start anti-powers of any order. We further show that any infinite word avoiding anti-powers of order 3 is ultimately periodic, and that there exist aperiodic words avoiding anti-powers of order 4. We also show that there exist aperiodic recurrent words avoiding anti-powers of order 6, and leave open the question whether there exist aperiodic recurrent words avoiding anti-powers of order k for k=4,5

    The number of clones determined by disjunctions of unary relations

    Full text link
    We consider finitary relations (also known as crosses) that are definable via finite disjunctions of unary relations, i.e. subsets, taken from a fixed finite parameter set Γ\Gamma. We prove that whenever Γ\Gamma contains at least one non-empty relation distinct from the full carrier set, there is a countably infinite number of polymorphism clones determined by relations that are disjunctively definable from Γ\Gamma. Finally, we extend our result to finitely related polymorphism clones and countably infinite sets Γ\Gamma.Comment: manuscript to be published in Theory of Computing System

    Crucial and bicrucial permutations with respect to arithmetic monotone patterns

    Full text link
    A pattern τ\tau is a permutation, and an arithmetic occurrence of τ\tau in (another) permutation π=π1π2...πn\pi=\pi_1\pi_2...\pi_n is a subsequence πi1πi2...πim\pi_{i_1}\pi_{i_2}...\pi_{i_m} of π\pi that is order isomorphic to τ\tau where the numbers i1<i2<...<imi_1<i_2<...<i_m form an arithmetic progression. A permutation is (k,)(k,\ell)-crucial if it avoids arithmetically the patterns 12...k12... k and (1)...1\ell(\ell-1)... 1 but its extension to the right by any element does not avoid arithmetically these patterns. A (k,)(k,\ell)-crucial permutation that cannot be extended to the left without creating an arithmetic occurrence of 12...k12... k or (1)...1\ell(\ell-1)... 1 is called (k,)(k,\ell)-bicrucial. In this paper we prove that arbitrary long (k,)(k,\ell)-crucial and (k,)(k,\ell)-bicrucial permutations exist for any k,3k,\ell\geq 3. Moreover, we show that the minimal length of a (k,)(k,\ell)-crucial permutation is max(k,)(min(k,)1)\max(k,\ell)(\min(k,\ell)-1), while the minimal length of a (k,)(k,\ell)-bicrucial permutation is at most 2max(k,)(min(k,)1)2\max(k,\ell)(\min(k,\ell)-1), again for k,3k,\ell\geq3
    corecore