6 research outputs found

    Anti-lecture Hall Compositions and Overpartitions

    Full text link
    We show that the number of anti-lecture hall compositions of n with the first entry not exceeding k-2 equals the number of overpartitions of n with non-overlined parts not congruent to 0,±10,\pm 1 modulo k. This identity can be considered as a refined version of the anti-lecture hall theorem of Corteel and Savage. To prove this result, we find two Rogers-Ramanujan type identities for overpartition which are analogous to the Rogers-Ramanjan type identities due to Andrews. When k is odd, we give an alternative proof by using a generalized Rogers-Ramanujan identity due to Andrews, a bijection of Corteel and Savage and a refined version of a bijection also due to Corteel and Savage.Comment: 16 page

    The Rogers-Ramanujan-Gordon Theorem for Overpartitions

    Full text link
    Let Bk,i(n)B_{k,i}(n) be the number of partitions of nn with certain difference condition and let Ak,i(n)A_{k,i}(n) be the number of partitions of nn with certain congruence condition. The Rogers-Ramanujan-Gordon theorem states that Bk,i(n)=Ak,i(n)B_{k,i}(n)=A_{k,i}(n). Lovejoy obtained an overpartition analogue of the Rogers-Ramanujan-Gordon theorem for the cases i=1i=1 and i=ki=k. We find an overpartition analogue of the Rogers-Ramanujan-Gordon theorem in the general case. Let Dk,i(n)D_{k,i}(n) be the number of overpartitions of nn satisfying certain difference condition and Ck,i(n)C_{k,i}(n) be the number of overpartitions of nn whose non-overlined parts satisfy certain congruences condition. We show that Ck,i(n)=Dk,i(n)C_{k,i}(n)=D_{k,i}(n). By using a function introduced by Andrews, we obtain a recurrence relation which implies that the generating function of Dk,i(n)D_{k,i}(n) equals the generating function of Ck,i(n)C_{k,i}(n). We also find a generating function formula of Dk,i(n)D_{k,i}(n) by using Gordon marking representations of overpartitions, which can be considered as an overpartition analogue of an identity of Andrews for ordinary partitions.Comment: 26 page

    Classical symmetric functions in superspace

    Full text link
    We present the basic elements of a generalization of symmetric function theory involving functions of commuting and anticommuting (Grassmannian) variables. These new functions, called symmetric functions in superspace, are invariant under the diagonal action of the symmetric group on the sets of commuting and anticommuting variables. In this work, we present the superspace extension of the classical bases, namely, the monomial symmetric functions, the elementary symmetric functions, the completely symmetric functions, and the power sums. Various basic results, such as the generating functions for the multiplicative bases, Cauchy formulas, involution operations as well as the combinatorial scalar product are also generalized.Comment: 21 pages, this supersedes the first part of math.CO/041230

    Overpartitions and Bressoud's conjecture, I

    Full text link
    In this paper, we introduce a new partition function B‾j\overline{B}_j which could be viewed as an overpartition analogue of the partition function BjB_j introduced by Bressoud. By constructing a bijection, we showed that there is a relationship between B‾1\overline{B}_1 and B0B_0 and a relationship between B‾0\overline{B}_0 and B1B_1. Based on the relationship between B‾1\overline{B}_1 and B0B_0 and Bressoud's theorems on the Rogers-Ramanujan-Gordon identities and the G\"ollnitz-Gordon identities, we obtain the overpartition analogue of the Rogers-Ramanujan-Gordon identities due to Chen, Sang and Shi and a new overpartition analogue of the Andrews-G\"ollnitz-Gordon identities. On the other hand, by using the relation between B‾0\overline{B}_0 and B1B_1 and Bressoud's conjecture for j=1j=1 proved by Kim, we obtain an overpartition analogue of Bressoud's conjecture for j=0j=0, which provides overpartition analogues of many classical partition theorems including Euler's partition theorem. The generating function of the overpartition analogue of Bressoud's conjecture for j=0j=0 is also obtained with the aid of Bailey pairs

    Les superpolynômes de Jack et le modèle Calogero-Moser-Sutherland N = 2

    Get PDF
    Dans cet ouvrage, on présente une généralisation des polynômes symétriques de Jack, les superpolynômes de Jack N = 2, et on discute de ses connections avec le modèle Calogero-Moser-Sutherland trigonométrique (tCMS) supersymétrique N = 2. On fait d’abord une brève introduction à la théorie des polynômes symétriques pour ensuite définir le polynôme symétrique de Jack. On le définit de trois façons : combinatoirement, en tant que fonction propre du modèle tCMS et comme le résultat de la symétrisation du polynôme de Jack non symétrique. On introduit ensuite la théorie des superpolynômes symétriques N = 1. Le superpolynôme de Jack est alors défini selon les trois mêmes approches adaptées au superespace. On procède ensuite à la construction des superpolynômes N = 2 et à la construction du modèle tCMS avec deux supersymétries, à la suite de quoi les quantités conservées du modèle sont présentées. Ultimement, on pose une première définition des superpolynômes de Jack N = 2. On montre alors que ceux-ci sont les fonctions propres du modèle tCMS N = 2 et de ses quantités conservées. On obtient auxiliairement une définition combinatoire de ces superpolynômes qui est conjecturée équivalente à la première.We present a generalization of the symmetric Jack polynomial, the N = 2 symmetric Jack superpolynomial, and discuss its links with the N = 2 supersymmetric extension of the trigonometric Calogero-Moser-Sutherland (tCMS) model. We first briefly review the theory of symmetric polynomials that leads us to three different definitions of the symmetric Jack polynomials: a combinatorial definition, the Jack polynomial as the eigenfunction of the tCMS model and as the result of the symmetrization of the non-symmetric Jack polynomial. We then do a brief introduction to the theory of symmetric superpolynomials. We also define the symmetric Jack superpolynomials using the superextension of the three aforementioned characterizations. After this introduction, we get to the main matter by defining the symmetric N = 2 superpolynomials. This ultimately results in a definition of the N = 2 Jack superpolynomial. We construct a N = 2 superextension of the tCMS model and find its conserved quantities. The N = 2 Jack superpolynomials are found to be the eigenfunctions of this model. As an auxiliary result, we obtain a conjecture regarding a combinatorial definition of these superpolynomials
    corecore