1,092 research outputs found

    Anti-jamming communication in cognitive radio networks with unknown channel Statistics

    Get PDF
    Abstract-Recently, many opportunistic spectrum sensing and access protocols have been proposed for cognitive radio networks (CRNs). For achieving optimized spectrum usage, existing solutions model the spectrum sensing and access problem as a partially observed Markov decision process (POMDP) and assume that the information states and/or the primary users' (PUs) traffic statistics are known a priori to the secondary users (SUs). While theoretically sound, these existing approaches may not be effective in practice due to two main concerns. First, the assumptions they made are not practical, as before the communication starts, PUs' traffic statistics may not be readily available to the SUs. Secondly and more seriously, existing approaches are extremely vulnerable to malicious jamming attacks. A cognitive attacker can always jam the channels to be accessed by leveraging the same statistic information and stochastic dynamic decision making process that the SUs would follow. To address the above concerns, we formulate the problem of anti-jamming multichannel access in CRNs and solve it as a non-stochastic multiarmed bandit (NS-MAB) problem, where the secondary sender and receiver adaptively choose their arms (i.e., sending and receiving channels) to operate. The proposed protocol enables them to hop to the same set of channels with high probability in the presence of jamming. We analytically show the convergence of the learning algorithms, i.e., the performance difference between the secondary sender and receiver's optimal strategies is no more than O( T n ln n). Extensive simulations are conducted to validate the theoretical analysis and show that the proposed protocol is highly resilient to various jamming attacks

    A novel multi-fold security framework for cognitive radio wireless ad-hoc networks

    Get PDF
    Cognitive Radio (CR) Technology has emerged as a smart and intelligent technology to address the problem of spectrum scarcity and its under-utilization. CR nodes sense the environment for vacant channels, exchange control information, and agree upon free channels list (FCL) to use for data transmission and conclusion. CR technology is heavily dependent on the control channel to dialogue on the exchanged control information which is usually in the Industrial-Scientific-Medical (ISM) band. As the ISM band is publically available this makes the CR network more prone to security vulnerabilities and flaws. In this paper a novel multi-fold security framework for cognitive radio wireless ad-hoc networks has been proposed. Multiple security levels, such as, encryption of beacon frame and privately exchanging the FCL, and the dynamic and adaptive behaviour of the framework makes the proposed protocol more resilient and secure against the traditional security attacks when compared with existing protocols

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Primary User Emulation Attacks in Cognitive Radio - An Experimental Demonstration and Analysis

    Get PDF
    Cognitive radio networks rely on the ability to avoid primary users, owners of the frequency, and prevent collisions for effective communication to take place. Additional malicious secondary users, jammers, may use a primary user emulation attacks to take advantage of the secondary user\u27s ability to avoid primary users and cause excessive and unexpected disruptions to communications. Two jamming/anti-jamming methods are investigated on Ettus Labs USRP 2 radios. First, pseudo-random channel hopping schemes are implemented for jammers to seek-and-disrupt secondary users while secondary users apply similar schemes to avoid all primary user signatures. In the second method the jammer uses adversarial bandit algorithms to avoid channels already heavily disrupted from primary user communications and concentrate efforts on channels heavily populated by secondary user communications. In addition the secondary users apply similar methods to avoid channels heavily occupied by jammers and primary users. The performance of these users is compared with and without the algorithm through channel delay, impact of algorithm on probability density functions, and user collision rate. Conclusions on made on the effectiveness of each technique
    • …
    corecore