107 research outputs found

    Optimization techniques for computationally expensive rendering algorithms

    Get PDF
    Realistic rendering in computer graphics simulates the interactions of light and surfaces. While many accurate models for surface reflection and lighting, including solid surfaces and participating media have been described; most of them rely on intensive computation. Common practices such as adding constraints and assumptions can increase performance. However, they may compromise the quality of the resulting images or the variety of phenomena that can be accurately represented. In this thesis, we will focus on rendering methods that require high amounts of computational resources. Our intention is to consider several conceptually different approaches capable of reducing these requirements with only limited implications in the quality of the results. The first part of this work will study rendering of time-­¿varying participating media. Examples of this type of matter are smoke, optically thick gases and any material that, unlike the vacuum, scatters and absorbs the light that travels through it. We will focus on a subset of algorithms that approximate realistic illumination using images of real world scenes. Starting from the traditional ray marching algorithm, we will suggest and implement different optimizations that will allow performing the computation at interactive frame rates. This thesis will also analyze two different aspects of the generation of anti-­¿aliased images. One targeted to the rendering of screen-­¿space anti-­¿aliased images and the reduction of the artifacts generated in rasterized lines and edges. We expect to describe an implementation that, working as a post process, it is efficient enough to be added to existing rendering pipelines with reduced performance impact. A third method will take advantage of the limitations of the human visual system (HVS) to reduce the resources required to render temporally antialiased images. While film and digital cameras naturally produce motion blur, rendering pipelines need to explicitly simulate it. This process is known to be one of the most important burdens for every rendering pipeline. Motivated by this, we plan to run a series of psychophysical experiments targeted at identifying groups of motion-­¿blurred images that are perceptually equivalent. A possible outcome is the proposal of criteria that may lead to reductions of the rendering budgets

    Real-Time Volumetric Shadows using 1D Min-Max Mipmaps

    Get PDF
    Light scattering in a participating medium is responsible for several important effects we see in the natural world. In the presence of occluders, computing single scattering requires integrating the illumination scattered towards the eye along the camera ray, modulated by the visibility towards the light at each point. Unfortunately, incorporating volumetric shadows into this integral, while maintaining real-time performance, remains challenging. In this paper we present a new real-time algorithm for computing volumetric shadows in single-scattering media on the GPU. This computation requires evaluating the scattering integral over the intersections of camera rays with the shadow map, expressed as a 2D height field. We observe that by applying epipolar rectification to the shadow map, each camera ray only travels through a single row of the shadow map (an epipolar slice), which allows us to find the visible segments by considering only 1D height fields. At the core of our algorithm is the use of an acceleration structure (a 1D minmax mipmap) which allows us to quickly find the lit segments for all pixels in an epipolar slice in parallel. The simplicity of this data structure and its traversal allows for efficient implementation using only pixel shaders on the GPU

    Fine tone control in hardware hatching

    Get PDF

    A Review on Light Shafts Rendering for Indoor Scenes

    Get PDF
    Rendering light shafts is one of the important topics in computer gaming and interactive applications. The methods and models that are used to generate light shafts play crucial role to make a scene more realistic in computer graphics. This article discusses the image-based shadows and geometric-based shadows that contribute in generating volumetric shadows and light shafts, depending on ray tracing, radiosity, and ray marching technique. The main aim of this study is to provide researchers with background on a progress of light scattering methods so as to make it available for them to determine the technique best suited to their goals. It is also hoped that our classification helps researchers find solutions to the shortcomings of each method

    Learning Object-Centric Neural Scattering Functions for Free-viewpoint Relighting and Scene Composition

    Full text link
    Photorealistic object appearance modeling from 2D images is a constant topic in vision and graphics. While neural implicit methods (such as Neural Radiance Fields) have shown high-fidelity view synthesis results, they cannot relight the captured objects. More recent neural inverse rendering approaches have enabled object relighting, but they represent surface properties as simple BRDFs, and therefore cannot handle translucent objects. We propose Object-Centric Neural Scattering Functions (OSFs) for learning to reconstruct object appearance from only images. OSFs not only support free-viewpoint object relighting, but also can model both opaque and translucent objects. While accurately modeling subsurface light transport for translucent objects can be highly complex and even intractable for neural methods, OSFs learn to approximate the radiance transfer from a distant light to an outgoing direction at any spatial location. This approximation avoids explicitly modeling complex subsurface scattering, making learning a neural implicit model tractable. Experiments on real and synthetic data show that OSFs accurately reconstruct appearances for both opaque and translucent objects, allowing faithful free-viewpoint relighting as well as scene composition. Project website: https://kovenyu.com/osf/Comment: Project website: https://kovenyu.com/osf/ Journal extension of arXiv:2012.08503. The first two authors contributed equally to this wor

    Deep Shading: Convolutional Neural Networks for Screen-Space Shading

    No full text
    In computer vision, Convolutional Neural Networks (CNNs) have recently achieved new levels of performance for several inverse problems where RGB pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen-space shading has recently increased the visual quality in interactive image synthesis, where per-pixel attributes such as positions, normals or reflectance of a virtual 3D scene are converted into RGB pixel appearance, enabling effects like ambient occlusion, indirect light, scattering, depth-of-field, motion blur, or anti-aliasing. In this paper we consider the diagonal problem: synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading simulates all screen-space effects as well as arbitrary combinations thereof at competitive quality and speed while not being programmed by human experts but learned from example images

    Beyond NeRF Underwater: Learning Neural Reflectance Fields for True Color Correction of Marine Imagery

    Full text link
    Underwater imagery often exhibits distorted coloration as a result of light-water interactions, which complicates the study of benthic environments in marine biology and geography. In this research, we propose an algorithm to restore the true color (albedo) in underwater imagery by jointly learning the effects of the medium and neural scene representations. Our approach models water effects as a combination of light attenuation with distance and backscattered light. The proposed neural scene representation is based on a neural reflectance field model, which learns albedos, normals, and volume densities of the underwater environment. We introduce a logistic regression model to separate water from the scene and apply distinct light physics during training. Our method avoids the need to estimate complex backscatter effects in water by employing several approximations, enhancing sampling efficiency and numerical stability during training. The proposed technique integrates underwater light effects into a volume rendering framework with end-to-end differentiability. Experimental results on both synthetic and real-world data demonstrate that our method effectively restores true color from underwater imagery, outperforming existing approaches in terms of color consistency.Comment: Robotics and Automation Letters (RA-L) VOL. 8, NO. 10, OCTOBER 202

    ClimateNeRF: Physically-based Neural Rendering for Extreme Climate Synthesis

    Full text link
    Physical simulations produce excellent predictions of weather effects. Neural radiance fields produce SOTA scene models. We describe a novel NeRF-editing procedure that can fuse physical simulations with NeRF models of scenes, producing realistic movies of physical phenomena inthose scenes. Our application -- Climate NeRF -- allows people to visualize what climate change outcomes will do to them. ClimateNeRF allows us to render realistic weather effects, including smog, snow, and flood. Results can be controlled with physically meaningful variables like water level. Qualitative and quantitative studies show that our simulated results are significantly more realistic than those from state-of-the-art 2D image editing and 3D NeRF stylization.Comment: project page: https://climatenerf.github.io

    Efficient and High-Quality Rendering of Higher-Order Geometric Data Representations

    Get PDF
    Computer-Aided Design (CAD) bezeichnet den Entwurf industrieller Produkte mit Hilfe von virtuellen 3D Modellen. Ein CAD-Modell besteht aus parametrischen Kurven und Flächen, in den meisten Fällen non-uniform rational B-Splines (NURBS). Diese mathematische Beschreibung wird ebenfalls zur Analyse, Optimierung und Präsentation des Modells verwendet. In jeder dieser Entwicklungsphasen wird eine unterschiedliche visuelle Darstellung benötigt, um den entsprechenden Nutzern ein geeignetes Feedback zu geben. Designer bevorzugen beispielsweise illustrative oder realistische Darstellungen, Ingenieure benötigen eine verständliche Visualisierung der Simulationsergebnisse, während eine immersive 3D Darstellung bei einer Benutzbarkeitsanalyse oder der Designauswahl hilfreich sein kann. Die interaktive Darstellung von NURBS-Modellen und -Simulationsdaten ist jedoch aufgrund des hohen Rechenaufwandes und der eingeschränkten Hardwareunterstützung eine große Herausforderung. Diese Arbeit stellt vier neuartige Verfahren vor, welche sich mit der interaktiven Darstellung von NURBS-Modellen und Simulationensdaten befassen. Die vorgestellten Algorithmen nutzen neue Fähigkeiten aktueller Grafikkarten aus, um den Stand der Technik bezüglich Qualität, Effizienz und Darstellungsgeschwindigkeit zu verbessern. Zwei dieser Verfahren befassen sich mit der direkten Darstellung der parametrischen Beschreibung ohne Approximationen oder zeitaufwändige Vorberechnungen. Die dabei vorgestellten Datenstrukturen und Algorithmen ermöglichen die effiziente Unterteilung, Klassifizierung, Tessellierung und Darstellung getrimmter NURBS-Flächen und einen interaktiven Ray-Casting-Algorithmus für die Isoflächenvisualisierung von NURBSbasierten isogeometrischen Analysen. Die weiteren zwei Verfahren beschreiben zum einen das vielseitige Konzept der programmierbaren Transparenz für illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle und zum anderen eine neue hybride Methode zur Reprojektion halbtransparenter und undurchsichtiger Bildinformation für die Beschleunigung der Erzeugung von stereoskopischen Bildpaaren. Die beiden letztgenannten Ansätze basieren auf rasterisierter Geometrie und sind somit ebenfalls für normale Dreiecksmodelle anwendbar, wodurch die Arbeiten auch einen wichtigen Beitrag in den Bereichen der Computergrafik und der virtuellen Realität darstellen. Die Auswertung der Arbeit wurde mit großen, realen NURBS-Datensätzen durchgeführt. Die Resultate zeigen, dass die direkte Darstellung auf Grundlage der parametrischen Beschreibung mit interaktiven Bildwiederholraten und in subpixelgenauer Qualität möglich ist. Die Einführung programmierbarer Transparenz ermöglicht zudem die Umsetzung kollaborativer 3D Interaktionstechniken für die Exploration der Modelle in virtuellenUmgebungen sowie illustrative und verständliche Visualisierungen tiefenkomplexer CAD-Modelle. Die Erzeugung stereoskopischer Bildpaare für die interaktive Visualisierung auf 3D Displays konnte beschleunigt werden. Diese messbare Verbesserung wurde zudem im Rahmen einer Nutzerstudie als wahrnehmbar und vorteilhaft befunden.In computer-aided design (CAD), industrial products are designed using a virtual 3D model. A CAD model typically consists of curves and surfaces in a parametric representation, in most cases, non-uniform rational B-splines (NURBS). The same representation is also used for the analysis, optimization and presentation of the model. In each phase of this process, different visualizations are required to provide an appropriate user feedback. Designers work with illustrative and realistic renderings, engineers need a comprehensible visualization of the simulation results, and usability studies or product presentations benefit from using a 3D display. However, the interactive visualization of NURBS models and corresponding physical simulations is a challenging task because of the computational complexity and the limited graphics hardware support. This thesis proposes four novel rendering approaches that improve the interactive visualization of CAD models and their analysis. The presented algorithms exploit latest graphics hardware capabilities to advance the state-of-the-art in terms of quality, efficiency and performance. In particular, two approaches describe the direct rendering of the parametric representation without precomputed approximations and timeconsuming pre-processing steps. New data structures and algorithms are presented for the efficient partition, classification, tessellation, and rendering of trimmed NURBS surfaces as well as the first direct isosurface ray-casting approach for NURBS-based isogeometric analysis. The other two approaches introduce the versatile concept of programmable order-independent semi-transparency for the illustrative and comprehensible visualization of depth-complex CAD models, and a novel method for the hybrid reprojection of opaque and semi-transparent image information to accelerate stereoscopic rendering. Both approaches are also applicable to standard polygonal geometry which contributes to the computer graphics and virtual reality research communities. The evaluation is based on real-world NURBS-based models and simulation data. The results show that rendering can be performed directly on the underlying parametric representation with interactive frame rates and subpixel-precise image results. The computational costs of additional visualization effects, such as semi-transparency and stereoscopic rendering, are reduced to maintain interactive frame rates. The benefit of this performance gain was confirmed by quantitative measurements and a pilot user study

    Realistic hair rendering in Autodesk Maya

    Get PDF
    Tato diplomová práce popisuje real-time zobrazovaní vlasů v 3D modelovacím programu Autodesk Maya. Zobrazovací modul je součást projektu Stubble - zasuvného modulu do programu Maya, který slouží k modelovaní vlasů. Prezentovaný algoritmus poskytuje vysoce kvalitní interaktivní náhled, pomocí kterého je možné modelovat vlasy bez nutnosti zdlouhavého vytváření náhledu v externím programu. Cílem je vytvořit takový náhled, který se bude co nejvíce podobat obrázkům, které produkuje 3Delight - zasuvný modul pro program Maya, který implementuje standardy zobrazovacího rozhraní RenderMan.This thesis describes a real-time hair rendering in 3D animation and modeling software Autodesk Maya. The renderer is part of the Stubble project a - Maya plug-in for hair modeling. The presented renderer provides a high-quality interactive preview that allows fast hair modeling without the need for rendering in slow off-line renderers. The goal of this work is to create a renderer that can generate images in real-time that are as close as possible to the output of the 3Delight renderer - a plug-in for Maya that is based on RenderMan standards.Department of Software and Computer Science EducationKatedra softwaru a výuky informatikyFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult
    • …
    corecore