3,469 research outputs found

    The random graph

    Full text link
    Erd\H{o}s and R\'{e}nyi showed the paradoxical result that there is a unique (and highly symmetric) countably infinite random graph. This graph, and its automorphism group, form the subject of the present survey.Comment: Revised chapter for new edition of book "The Mathematics of Paul Erd\H{o}s

    Fraisse Limits, Ramsey Theory, and Topological Dynamics of Automorphism Groups

    Get PDF
    We study in this paper some connections between the Fraisse theory of amalgamation classes and ultrahomogeneous structures, Ramsey theory, and topological dynamics of automorphism groups of countable structures.Comment: 73 pages, LaTeX 2e, to appear in Geom. Funct. Ana

    Graph removal lemmas

    Get PDF
    The graph removal lemma states that any graph on n vertices with o(n^{v(H)}) copies of a fixed graph H may be made H-free by removing o(n^2) edges. Despite its innocent appearance, this lemma and its extensions have several important consequences in number theory, discrete geometry, graph theory and computer science. In this survey we discuss these lemmas, focusing in particular on recent improvements to their quantitative aspects.Comment: 35 page

    Large rainbow cliques in randomly perturbed dense graphs

    Full text link
    For two graphs GG and HH, write G⟢rbwHG \stackrel{\mathrm{rbw}}{\longrightarrow} H if GG has the property that every {\sl proper} colouring of its edges yields a {\sl rainbow} copy of HH. We study the thresholds for such so-called {\sl anti-Ramsey} properties in randomly perturbed dense graphs, which are unions of the form GβˆͺG(n,p)G \cup \mathbb{G}(n,p), where GG is an nn-vertex graph with edge-density at least dd, and dd is a constant that does not depend on nn. Our results in this paper, combined with our results in a companion paper, determine the threshold for the property GβˆͺG(n,p)⟢rbwKsG \cup \mathbb{G}(n,p) \stackrel{\mathrm{rbw}}{\longrightarrow} K_s for every ss. In this paper, we show that for sβ‰₯9s \geq 9 the threshold is nβˆ’1/m2(K⌈s/2βŒ‰)n^{-1/m_2(K_{\left\lceil s/2 \right\rceil})}; in fact, our 11-statement is a supersaturation result. This turns out to (almost) be the threshold for s=8s=8 as well, but for every 4≀s≀74 \leq s \leq 7, the threshold is lower; see our companion paper for more details. In this paper, we also consider the property GβˆͺG(n,p)⟢rbwC2β„“βˆ’1G \cup \mathbb{G}(n,p) \stackrel{\mathrm{rbw}}{\longrightarrow} C_{2\ell - 1}, and show that the threshold for this property is nβˆ’2n^{-2} for every β„“β‰₯2\ell \geq 2; in particular, it does not depend on the length of the cycle C2β„“βˆ’1C_{2\ell - 1}. It is worth mentioning that for even cycles, or more generally for any fixed bipartite graph, no random edges are needed at all.Comment: 21 pages; some typos fixed in the last versio
    • …
    corecore