6,494 research outputs found

    Dual port microstrip patch antennas and circuits with high interport isolation for in-band full duplex (IBFD) wireless applications

    Get PDF
    In-Band Full Duplex (IBFD) is one effective way to increase the spectral efficiency and the throughput of wireless communication systems by transmitting and receiving simultaneously on the same frequency band but the coupling (called Self Interference or SI) of transmit signal to its receiver is one major problem. IBFD operation can be realized successfully by suppressing this coupling or Self Interference (SI). The required amount of SI cancellation depends on the power and bandwidth of transmitted signal. Generally, the SI should be suppressed to RF transceiver noise floor. To achieve this amount of SI suppression, SI suppression mechanism is normally implemented at three stages across the IBFD transceiver and they are known as antenna cancellation, RF/analog cancellation and digital base-band cancellation. Most of the SI suppression is achieved at antenna stage to relax the required amount of SI cancellation at the rest of two stages .Thus, a dual port microstrip patch antenna with very high port to port RF isolation is required in addition to digital self interference cancellation techniques to enable simultaneous transmit and receive wireless operation at same carrier frequency using single antenna for full duplex radio transceivers. The objective of my research work presented in this dissertation is to design, implement and measure dual port microstrip patch antennas which deploy different feeding techniques along with Self Interference Cancellation (SIC) circuits to get high interport isolation to enable such antennas for realization of IBFD wireless operation using single/shared antenna architecture. The goal is to achieve high interport isolation for dual port antenna with minimum effect on radiation performance of antennas

    Half-Duplex or Full-Duplex Relaying: A Capacity Analysis under Self-Interference

    Full text link
    In this paper multi-antenna half-duplex and full-duplex relaying are compared from the perspective of achievable rates. Full-duplexing operation requires additional resources at the relay such as antennas and RF chains for self-interference cancellation. Using a practical model for the residual self-interference, full-duplex achievable rates and degrees of freedom are computed for the cases for which the relay has the same number of antennas or the same number of RF chains as in the half-duplex case, and compared with their half-duplex counterparts. It is shown that power scaling at the relay is necessary to maximize the the degrees of freedom in the full-duplex mode.Comment: New references added and some typos have been corrected. 6 Pages, 5 Figures. Accepted for publication in the CISS-201

    Wideband Self-Adaptive RF Cancellation Circuit for Full-Duplex Radio: Operating Principle and Measurements

    Full text link
    This paper presents a novel RF circuit architecture for self-interference cancellation in inband full-duplex radio transceivers. The developed canceller is able to provide wideband cancellation with waveform bandwidths in the order of 100 MHz or beyond and contains also self-adaptive or self-healing features enabling automatic tracking of time-varying self-interference channel characteristics. In addition to architecture and operating principle descriptions, we also provide actual RF measurements at 2.4 GHz ISM band demonstrating the achievable cancellation levels with different bandwidths and when operating in different antenna configurations and under low-cost highly nonlinear power amplifier. In a very challenging example with a 100 MHz waveform bandwidth, around 41 dB total cancellation is obtained while the corresponding cancellation figure is close to 60 dB with the more conventional 20 MHz carrier bandwidth. Also, efficient tracking in time-varying reflection scenarios is demonstrated.Comment: 7 pages, to be presented in 2015 IEEE 81st Vehicular Technology Conferenc

    Full-Duplex Systems Using Multi-Reconfigurable Antennas

    Full text link
    Full-duplex systems are expected to achieve 100% rate improvement over half-duplex systems if the self-interference signal can be significantly mitigated. In this paper, we propose the first full-duplex system utilizing Multi-Reconfigurable Antenna (MRA) with ?90% rate improvement compared to half-duplex systems. MRA is a dynamically reconfigurable antenna structure, that is capable of changing its properties according to certain input configurations. A comprehensive experimental analysis is conducted to characterize the system performance in typical indoor environments. The experiments are performed using a fabricated MRA that has 4096 configurable radiation patterns. The achieved MRA-based passive self-interference suppression is investigated, with detailed analysis for the MRA training overhead. In addition, a heuristic-based approach is proposed to reduce the MRA training overhead. The results show that at 1% training overhead, a total of 95dB self-interference cancellation is achieved in typical indoor environments. The 95dB self-interference cancellation is experimentally shown to be sufficient for 90% full-duplex rate improvement compared to half-duplex systems.Comment: Submitted to IEEE Transactions on Wireless Communication

    Joint Design of Multi-Tap Analog Cancellation and Digital Beamforming for Reduced Complexity Full Duplex MIMO Systems

    Full text link
    Incorporating full duplex operation in Multiple Input Multiple Output (MIMO) systems provides the potential of boosting throughput performance. However, the hardware complexity of the analog self-interference canceller scales with the number of transmit and receive antennas, thus exploiting the benefits of analog cancellation becomes impractical for full duplex MIMO transceivers. In this paper, we present a novel architecture for the analog canceller comprising of reduced number of taps (tap refers to a line of fixed delay and variable phase shifter and attenuator) and simple multiplexers for efficient signal routing among the transmit and receive radio frequency chains. In contrast to the available analog cancellation architectures, the values for each tap and the configuration of the multiplexers are jointly designed with the digital beamforming filters according to certain performance objectives. Focusing on a narrowband flat fading channel model as an example, we present a general optimization framework for the joint design of analog cancellation and digital beamforming. We also detail a particular optimization objective together with its derived solution for the latter architectural components. Representative computer simulation results demonstrate the superiority of the proposed low complexity full duplex MIMO system over lately available ones.Comment: 8 pages, 4 figures, IEEE ICC 201
    corecore