454 research outputs found

    Design of Wireless Sensors for IoT with Energy Storage and Communication Channel Heterogeneity

    Get PDF
    Autonomous Wireless Sensors (AWSs) are at the core of every Wireless Sensor Network (WSN). Current AWS technology allows the development of many IoT-based applications, ranging from military to bioengineering and from industry to education. The energy optimization of AWSs depends mainly on: Structural, functional, and application specifications. The holistic design methodology addresses all the factors mentioned above. In this sense, we propose an original solution based on a novel architecture that duplicates the transceivers and also the power source using a hybrid storage system. By identifying the consumption needs of the transceivers, an appropriate methodology for sizing and controlling the power flow for the power source is proposed. The paper emphasizes the fusion between information, communication, and energy consumption of the AWS in terms of spectrum information through a set of transceiver testing scenarios, identifying the main factors that influence the sensor node design and their inter-dependencies. Optimization of the system considers all these factors obtaining an energy efficient AWS, paving the way towards autonomous sensors by adding an energy harvesting element to them

    Enabling Hardware Green Internet of Things: A review of Substantial Issues

    Get PDF
    Between now and the near future, the Internet of Things (IoT) will redesign the socio-ecological morphology of the human terrain. The IoT ecosystem deploys diverse sensor platforms connecting millions of heterogeneous objects through the Internet. Irrespective of sensor functionality, most sensors are low energy consumption devices and are designed to transmit sporadically or continuously. However, when we consider the millions of connected sensors powering various user applications, their energy efficiency (EE) becomes a critical issue. Therefore, the importance of EE in IoT technology, as well as the development of EE solutions for sustainable IoT technology, cannot be overemphasised. Propelled by this need, EE proposals are expected to address the EE issues in the IoT context. Consequently, many developments continue to emerge, and the need to highlight them to provide clear insights to researchers on eco-sustainable and green IoT technologies becomes a crucial task. To pursue a clear vision of green IoT, this study aims to present the current state-of-the art insights into energy saving practices and strategies on green IoT. The major contribution of this study includes reviews and discussions of substantial issues in the enabling of hardware green IoT, such as green machine to machine, green wireless sensor networks, green radio frequency identification, green microcontroller units, integrated circuits and processors. This review will contribute significantly towards the future implementation of green and eco-sustainable IoT

    Smart-antenna techniques for energy-efficient wireless sensor networks used in bridge structural health monitoring

    Get PDF
    Abstract: It is well known that wireless sensor networks differ from other computing platforms in that 1- they typically require a minimal amount of computing power at the nodes; 2- it is often desirable for sensor nodes to have drastically low power consumption. The main benefit of the this work is a substantial network life before batteries need to be replaced or, alternatively, the capacity to function off of modest environmental energy sources (energy harvesting). In the context of Structural Health Monitoring (SHM), battery replacement is particularly problematic since nodes can be in difficult to access locations. Furthermore, any intervention on a bridge may disrupt normal bridge operation, e.g. traffic may need to be halted. In this regard, switchbeam smart antennas in combination with wireless sensor networks (WSNs) have shown great potential in reducing implementation and maintenance costs of SHM systems. The main goal of implementing switch-beam smart antennas in our application is to reduce power consumption, by focusing the radiated energy only where it is needed. SHM systems capture the dynamic vibration information of a bridge structure in real-time in order to assess the health of the structure and to predict failures. Current SHM systems are based on piezoelectric patch sensors. In addition, the collection of data from the plurality of sensors distributed over the span of the bridge is typically performed through an expensive and bulky set of shielded wires which routes the information to a data sink at one end of the structure. The installation, maintenance and operational costs of such systems are extremely high due to high power consumption and the need for periodic maintenance. Wireless sensor networks represent an attractive alternative, in terms of cost, ease of maintenance, and power consumption. However, network lifetime in terms of node battery life must be very long (ideally 5–10 years) given the cost and hassle of manual intervention. In this context, the focus of this project is to reduce the global power consumption of the SHM system by implementing switched-beam smart antennas jointly with an optimized MAC layer. In the first part of the thesis, a sensor network platform for bridge SHM incorporating switched-beam antennas is modelled and simulated. where the main consideration is the joint optimization of beamforming parameters, MAC layer, and energy consumption. The simulation model, built within the Omnet++ network simulation framework, incorporates the energy consumption profiles of actual selected components (microcontroller, radio interface chip). The energy consumption and packet delivery ratio (PDR) of the network with switched-beam antennas is compared with an equivalent network based on omnidirectional antennas. In the second part of the thesis, this system model is leveraged to examine two distinct but interrelated aspects: Gallium Arsenide (GaAs) based solar energy harvesting and switched-beam antenna strategies. The main consideration here is the joint optimization of solar energy harvesting and switchedbeam directional antennas, where an equivalent network based on omnidirectional antennas acts as a baseline reference for comparison purposes.Il est bien connu que les réseaux de capteurs sans fils diffèrent des autres plateformes informatiques étant donné 1- qu’ils requièrent typiquement une puissance de calcul minimale aux noeuds du réseau ; 2- qu’il est souvent désirable que les noeuds capteurs aient une consommation d’énergie dramatiquement faible. La principale retombée de ce travail réside en la durée de vie allongée du réseau avant que les piles ne doivent être remplacées ou, alternativement, la capacité de fonctionner indéfiniment à partir de modestes sources d’énergie ambiente (glânage d’énergie). Dans le contexte du contrôle de la santé structurale (CSS), le remplacement de piles est particulièrement problématique puisque les noeuds peuvent se trouver en des endroits difficiles d’accès. De plus, toute intervention sur un pont implique une perturbation de l’opération normale de la structure, par exemple un arrêt du traffic. Dans ce contexte, les antennes intelligentes à commutation de faisceau en combinaison avec les réseaux de capteurs sans fils ont démontré un grand potentiel pour réduire les coûts de réalisation et d’entretien de systèmes de CSS. L’objectif principal de l’intégration d’antennes à commutation de faisceau dans notre application réside dans la réduction de la consommation énergétique, réalisée en concentrant l’énergie radiée uniquement là où elle est nécessaire. Les systèmes de CSS capturent l’information dynamique de vibration d’une structure de pont en temps réel de manière à évaluer la santé de la structure et prédire les failles. Les systèmes courants de CSS sont basés sur des senseurs piézoélectriques planaires. De plus, la collecte de données à partir de la pluralité de senseurs distribués sur l’étendue du pont est typiquement effectuée par le biais d’un ensemble coûteux et encombrant de câbles blindés qui véhiculent l’information jusqu’à un point de collecte à une extremité de la structure. L’installation, l’entretien, et les coûts opérationnels de tels systèmes sont extrêmement élevés étant donné la consommation de puissance élevée et le besoin d’entretien régulier. Les réseaux de capteurs sans fils représentent une alternative attrayante, en termes de coût, facilité d’entretien et consommation énergétique. Toutefois, la vie de réseau en termes de la durée de vie des piles doit être très longue (idéalement de 5 à 10 ans) étant donné le coût et les problèmes liés à l’intervention manuelle. Dans ce contexte, ce projet se concentre sur la réduction de la consommation de puissance globale d’un système de CSS en y intégrant des antennes intelligentes à commutation de faisceau conjointement avec une couche d’accès au médium (couche MAC) optimisée. Dans la première partie de la thèse, une plateforme de réseau de capteurs sans fils pour le CSS d’un pont incorporant des antennes à commutation de faisceaux est modélisé et simulé, avec pour considération principale l’optimisation des paramètres de sélection de faisceau, de la couche MAC et de la consommation d’énergie. Le modèle de simulation, construit dans le logiciel de simulation de réseaux Omnet++, incorpore les profils de consommation d’énergie de composants réels sélectionnés (microcontrôleur, puce d’interface radio). La consommation d’énergie et le taux de livraison de paquets du réseau avec antennes à commutation de faisceau est comparé avec un réseau équivalent basé sur des antennes omnidirectionnelles. Dans la deuxième partie de la thèse, le modèle système proposé est mis à contribution pour examiner deux aspects distrincts mais interreliés : le glânage d’énergie à partir de cellules solaire à base d’arséniure de Gallium (GaAs) et les stratégies liées aux antennes à commutation de faisceau. La considération principale ici est l’optimisation conjointe du glânage d’énergie et des antennes à commutation de faisceau, en ayant pour base de comparaison un réseau équivalent à base d’antennes omnidirectionnelles
    • …
    corecore