470 research outputs found

    Efficient user clustering, receive antenna selection, and power allocation algorithms for massive MIMO-NOMA systems

    Get PDF
    Massive multiple-input multiple-output (MIMO) and nonorthogonal multiple access (NOMA)-based technologies are considered as essential parts in the 5G systems to fulfill the escalating demands of higher connectivity and data rates for emerging wireless applications. In this paper, a new approach of massive MIMO-NOMA with receive antenna selection (RAS) is considered for the uplink channel to significantly increase the number of connected devices and overall sum rate capacity with improved user-fairness and less complexity. The proposed scheme is designed from two multiuser MIMO (MU-MIMO) clusters, based on the available number of radio frequency chains (RFCs) at the base station and channel conditions, followed by power-domain NOMA for the simultaneous signal transmission. We derive the sum rate and capacity region expressions for MIMO-NOMA with RAS over Rayleigh fading channels. Then, an optimal and three highly efficient sub-optimal dynamic user clustering, RAS, and power allocation algorithms are proposed for sum rate maximization under received power constraints and minimum rate requirements of the allowed users. The effectiveness of designed algorithms is verified through extensive analysis and numerical simulations compared to the reference MU-MIMO and MIMO-NOMA systems. The achieved results show a substantial increase in connectivity, up to two-fold for the accessible number of RFCs, and overall sum rate capacity while satisfying the minimum users’ rates. Besides, important tradeoffs can be realized between system performances, hardware and computational complexities, and desired user-fairness in terms of serving more users with equal/unequal rates

    Best sum-throughput evaluation of cooperative downlink transmission nonorthogonal multiple access system

    Get PDF
    In cooperative simultaneous wireless information and power transfer (SWIPT) nonorthogonal multiple access (NOMA) downlink situations, the current research investigates the total throughput of users in center and edge of cell. We focus on creating ways to solve these problems because the fair transmission rate of users located in cell edge and outage performance are significant hurdles at NOMA schemes. To enhance the functionality of cell-edge users, we examine a two-user NOMA scheme whereby the cell-center user functions as a SWIPT relay using power splitting (PS) with a multiple-input single-output. We calculated the probability of an outage for both center and edge cell users, using closed-form approximation formulas and evaluate the system efficacy. The usability of cell edge users is maximized by downlink transmission NOMA (CDT-NOMA) employing a SWIPT relay that employs PS. The suggested approach calculates the ideal value of the PS coefficient to optimize the sum throughput. Compared to the noncooperative and single-input single-output NOMA systems, the best SWIPT-NOMA system provides the cell-edge user with a significant throughput gain. Applying SWIPT-based relaying transmission has no impact on the framework’s overall throughput

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Fairness Comparison of Uplink NOMA and OMA

    Full text link
    In this paper, we compare the resource allocation fairness of uplink communications between non-orthogonal multiple access (NOMA) schemes and orthogonal multiple access (OMA) schemes. Through characterizing the contribution of the individual user data rate to the system sum rate, we analyze the fundamental reasons that NOMA offers a more fair resource allocation than that of OMA in asymmetric channels. Furthermore, a fairness indicator metric based on Jain's index is proposed to measure the asymmetry of multiuser channels. More importantly, the proposed metric provides a selection criterion for choosing between NOMA and OMA for fair resource allocation. Based on this discussion, we propose a hybrid NOMA-OMA scheme to further enhance the users fairness. Simulation results confirm the accuracy of the proposed metric and demonstrate the fairness enhancement of the proposed hybrid NOMA-OMA scheme compared to the conventional OMA and NOMA schemes.Comment: 6 pages, accepted for publication, VTC 2017, Spring, Sydne

    Performance of downlink NOMA with multiple antenna base station, full-duplex and D2D transmission

    Get PDF
    The implementation of non-orthogonal multiple access (NOMA) and transmit antenna selection (TAS) technique has considered in this paper since TAS-aware base station (BS) provides the low cost, low complexity, and high diversity gains. In this paper, we investigate performance of two users by deriving outage probability. The system performance benefits from design of TAS and full-duplex (FD) scheme applied at NOMA users, and bandwidth efficiency will be enhanced although self-interference exists due to FD. The main contribution lies in the exact expressions of outage probability which are derived to exhibit system performance. Different from the simulated parameters, the analytical results show that increasing number of transmit antennas at the BS is way to improve system performance
    • …
    corecore