289 research outputs found

    Secrecy performance of TAS/SC-based multi-hop harvest-to-transmit cognitive WSNs under joint constraint of interference and hardware imperfection

    Get PDF
    In this paper, we evaluate the secrecy performance of multi-hop cognitive wireless sensor networks (WSNs). In the secondary network, a source transmits its data to a destination via the multi-hop relaying model using the transmit antenna selection (TAS)/selection combining (SC) technique at each hop, in the presence of an eavesdropper who wants to receive the data illegally. The secondary transmitters, including the source and intermediate relays, have to harvest energy from radio-frequency signals of a power beacon for transmitting the source data. Moreover, their transmit power must be adjusted to satisfy the quality of service (QoS) of the primary network. Under the joint impact of hardware imperfection and interference constraint, expressions for the transmit power for the secondary transmitters are derived. We also derive exact and asymptotic expressions of secrecy outage probability (SOP) and probability of non-zero secrecy capacity (PNSC) for the proposed protocol over Rayleigh fading channel. The derivations are then verified by Monte Carlo simulations.Web of Science195art. no. 116

    On Secrecy Performance for Energy-Harvesting Multi-Antenna Relaying Networks with a Dual-Use Source

    Get PDF
    This paper studies the secrecy performance of an energy-harvesting relaying system in the presence of a dual-use source node and an eavesdropper. Specifically, the source has dual roles in the dual-hop communication: 1) to transmit confidential information in the first hop; 2) to generate jamming signal to interfere the eavesdropper in the second hop. Moreover, the multi-antenna relay deploys a power-splitting harvesting scheme to coordinate the information receiving and energy harvesting, and adopts maximal ratio combining technique to process the multiple copies of signals. Considering decode-and-forward protocol and transmit antenna selection scheme, we derive an analytical expression for secrecy outage probability, and perform Monte Carlo simulation to validate the analysis. Analytical results show that the SOP performance with the dual-use source node can be effectively improved when the relay-destination channel does not have absolute advantage over the relay-eavesdropper channel

    Two-path succesive relaying schemes in the presence of inter-relay interference

    Get PDF
    Relaying is a promising technique to improve wireless network performance. A conventional relay transmits and receives signals in two orthogonal channels due to half duplex constraint of wireless network. This results in inefficient use of spectral resources. Two-Path Successive Relaying (TPSR) has been proposed to recover loss in spectral efficiency. However, the performance of TPSR is degraded by Inter-Relay Interference (IRI). This thesis investigates the performance of TPSR affected by IRI and proposes several schemes to improve relaying reliability, throughput and secrecy. Simulations revealed that the existing TPSR could perform worse than the conventional Half Duplex Relaying (HDR) scheme. Opportunistic TPSR schemes are proposed to improve the capacity performance. Several relay pair selection criteria are developed to ensure the selection of the best performing relay pair. Adaptive schemes which dynamically switch between TPSR and conventional HDR are proposed to further improve the performance. Simulation and analytical results show that the proposed schemes can achieve up to 45% ergodic capacity improvement and lower outage probability compared to baseline schemes, while achieving the maximum diversity and multiplexing tradeoff of the multi-input single-output channel. In addition, this thesis proposes secrecy TPSR schemes to protect secrecy of wireless transmission from eavesdropper. The use of two relays in the proposed schemes deliver more robust secrecy transmission while the use of scheduled jamming signals improves secrecy rate. Simulation and analytical results reveal that the proposed schemes can achieve up to 62% ergodic secrecy capacity improvement and quadratically lower intercept and secrecy outage probabilities if compared to existing schemes. Overall, this thesis demonstrates that the proposed TPSR schemes are able to deliver performance improvement in terms of throughput, reliability and secrecy in the presence of IRI

    Security Improvement for Energy Harvesting based Overlay Cognitive Networks with Jamming-Assisted Full-Duplex Destinations

    Get PDF
    This work investigates the secrecy capability of energy harvesting based overlay cognitive networks (EHOCNs). To this end, we assume that a message by a licensed transmitter is relayed by an unlicensed sender. Critically, the unlicensed sender uses energy harvested from licensed signals, enhancing the overall energy efficiency and maintaining the integrity of licensed communications. To secure messages broadcast by the unlicensed sender against the wire-tapper, full-duplex destinations - unlicensed recipient and licensed receiver - jam the eavesdropper at the same time they receive signals from the unlicensed sender. To this effect, we derive closed-form formulas for the secrecy outage probability, which then quantify the security performance of both unlicensed and licensed communications for EHOCNs with jamming-assisted full-duplex destinations, namely EHOCNwFD. In addition, optimum operating parameters are established, which can serve as essential design guidelines of such systems.acceptedVersionPeer reviewe

    Physical security with power beacon assisted in half-duplex relaying networks over Rayleigh fading channel: performance analysis

    Get PDF
    In this research, we proposed and investigated physical security with power beacon assisted in half-duplex relaying networks over a Rayleigh fading channel. In this model, the source (S) node communicates with the destination (D) node via the helping of the intermediate relay (R) node. The D and R nodes harvest energy from the power beacon (PB) node in the presence of a passive eavesdropper (E) node. Then we derived the integral form of the system outage probability (OP) and closed form of the intercept probability (IP). The correctness of the analytical of the OP and IP is verified by the Monte Carlo simulation. The influence of the main system parameters on the OP and IP also is investigated. The research results indicated that the analytical results are the same as the simulation ones

    Research Issues, Challenges, and Opportunities of Wireless Power Transfer-Aided Full-Duplex Relay Systems

    Get PDF
    We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD) relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at the FD relay node. To this end, a promising solution is outlined to address the two challenges, which realizes consecutive FD realization at all times and forwards all the desired signal to the destination for decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution, which effectively reduces the circuit complexity and releases high power consumption at the FD relay node. Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some future research is also envisaged for WPT-aided FD systems

    Physical layer secrecy by power splitting and jamming in cooperative multiple relay based on energy harvesting in full-duplex network

    Get PDF
    In this article, we investigated the secrecy performance of a three-hop relay network system with Power Splitting (PS) and Energy Harvesting (EH). In the presence of one eavesdropper, a signal is transferred from source to destination with the help of a relay. The source signal transmits in full-duplex (FD) mood, jamming the relay transfer signals to the destination. The relay and source employ Time Switching (TS) and Energy Harvesting (EH) techniques to obtain the power from the power beacon. In this study, we compared the Secrecy Rate of two Cooperative Schemes, Amplify and Forward (AF) and Decode and Forward (DF), for both designed systems with the established EH and PS system. The Secrecy Rate was improved by 50.5% in the AF scheme and by 44.2% in the DF scheme between the relay and eavesdropper at 40 m apart for the proposed system in EH and PS. This simulation was performed using the Monto Carlo method in MATLAB
    corecore