281 research outputs found

    Wide-band channel sounding in the bands above 2GHz

    Get PDF
    Modem telecommunication services require increasing data rates for both mobile and fixed applications. At frequencies in the range 2.5 GHz to 6 GHz physical constraints on the size of equipment result in antenna with moderate directivity typically with an antenna beam width of 20 degrees or greater. Thus building and ground clutter is present within the first Fresnel zones of the antenna system which gives rise to multi-path propagation. This multi-path propagation (average delay and RMS delay spread) has been investigated using a wideband FMCW channel sounder that is capable of operation at a number of frequencies. The channel sounder has been based upon a parallel architecture sounder operating within the 2 GHz band with a number of frequency conversion modules to translate operation to the new frequency bands under study. Two primary configurations have been explored. In the first of these, propagation has been measured simultaneously within the 2.5 GHz, 3.4 GHz and 5.7 GHz bands. This is believed to be novel and original. In the second configuration four parallel channels operating within the 5.7 GHz band may be operated simultaneously. This configuration supports multiple antennas at the receiver. To support the work in the bands from 2.5 GHz to 6 GHz wideband discone antenna have been designed and fabricated. A system to provide relative gain and phase calibration for up to four antennas has been developed and demonstrated. This is also believed to represent a novel method of performing antenna and array calibration. Finally, the frequency converters have been used in conjunction with additional components to provide an FMCพ sounder operating within the 60 GHz Oxygen absorption band. This work is novel in that up to 1 GHz of spectrum can be swept. To support this work a significant number of microwave components have been designed and developed. In particular a novel wide band balanced X3 multiplier and a novel impedance-matched amplitude-equaliser (to provide amplifier gain-slope equalisation) has been developed. Channel soundings have been performed at three frequencies simultaneously using band specific and common antenna. The average delay and RMS delay spread have been demonstrated to be essentially frequency independent for the environments evaluated

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures

    A Simultaneous Wideband Calibration for Digital Beamforming Arrays at Short Distances [Measurements Corner]

    Get PDF

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Radiowave propagation and antennas for high data rate mobile communications in the 60 GHz band

    Get PDF
    The 60 GHz MIMO systems are seen as some of the best candidates for the implementation of future high data-rate short range communications systems such as wireless personal area networks (WPAN). Although the performance of MIMO systems has been studied thoroughly theoretically and experimentally at lower frequencies like at 2 and 5 GHz, there is a clear lack of measurement data and experimental performance evaluations of MIMO techniques at 60 GHz. Furthermore, more effort is still needed in the design and evaluation of compact low cost 60 GHz antennas for communication applications. In the first part of the thesis, the first 60 GHz MIMO channel measurement system is presented. It is based on a previously developed 2 and 5 GHz sounder and frequency converters. This system uses virtual antenna arrays to create the channel matrix. A measurement campaign is reported. In order to improve the delay resolution, two other MIMO measurement systems are presented, based on an ultra wide band (UWB) sounder and a vector network analyzer (VNA). Those systems allow full characterization of the MIMO channel in the delay and angular domains. In the second part of this work, the performance of multi-antenna techniques is evaluated based on the measurement data obtained in the first part of the thesis. Three of the most promising multi-antenna techniques, namely MIMO, antenna selection MIMO, and beam steering, are analyzed and compared. The presented results indicate that the mutual information of the measured MIMO channel is quite close to that of the independent and identically distributed (i.i.d.) MIMO Rayleigh channel. Furthermore, in realistic conditions it is seen that MIMO-antenna selection often leads to lower mutual information than traditional MIMO with the same number of RF chains. Moreover, it is shown that when considering phase shifters with realistic losses, MIMO technique almost always outperforms beam steering technique. In the last part of the thesis a 60 GHz planar omnidirectional antenna is presented. This antenna is very suitable for communications applications since it has low profile and uses a metal layer only on one side of the substrate. Therefore, it can be manufactured easily and at very low cost. In addition, an advanced quasi full 3-D radiation pattern measurement system has been developed to evaluate probe-fed antennas. Very good measurement repeatability is reported. The radiation of the probe is analyzed and is seen to be the main limitation of the dynamic range of the measurement setup

    Experimental characterization of the radio channel for systems with large bandwidth and multiple antennas

    Get PDF
    [SPA] Cada día son necesarias comunicaciones mejores y más eficientes, con mayores anchos de banda y mayores tasas de transferencias de datos. Por un lado los sistemas de múltiples antenas, MIMO, surgieron como una técnica para optimizar el uso de la potencia y el espectro. Por otro lado, los sistemas Ultra-Wideband, UWB, han ganado recientemente el interés de la comunidad científica por su gran ancho de banda combinado con su baja potencia de transmisión. A la hora de diseñar y testear nuevos dispositivos de comunicaciones inalámbricas, es esencial poseer un conocimiento preciso del canal de propagación por el que se propagan dichas señales. Esta tesis, se basa en el modelado del canal de propagación para sistemas de gran ancho de banda y múltiples antenas desde un punto de vista experimental. Primeramente se presentan las mejoras y desarrollos realizados en el ámbito de los sistemas de medida del canal, dado que es necesario disponer de equipos adecuados y precisos para realizar adecuadas medidas del canal. Seguidamente, se analiza el canal MIMO-UWB en interiores. Se realiza un análisis en profundidad de varios parámetros, especialmente parámetros de una antena como las pérdidas de propagación, el factor de polarización cruzada o la dispersión del retardo. Finalmente, la tesis particulariza el análisis del canal en un entorno especial como es el caso de túneles. Se realiza un análisis experimental de parámetros de una antena como multi antena para luego evaluar las prestaciones que pueden brindar varias técnicas de diversidad como es en el dominio de la frecuencia, la polarización, el espacio o el tiempo.[ENG] Wireless communications have become essential in our society [Rappaport, 1996], [Parsons, 2000]. Nowadays, people need to be connected everywhere and at any time, and demand faster and enhanced communications every day. New applications requires higher data rates and, therefore, higher bandwidths. On the one hand, Multiple-Input Multiple-Output (MIMO) systems were proposed as one solution to achieve higher data rates and optimize the use of the spectrum. On the other hand, more recently, systems with an ultra large bandwidth, and particularly Ultra-Wideband (UWB) systems, have gained the interest of the scientific community. Such interest is owing to the extremely high data rates offered and its possible coexistence with existing systems due to the its low transmitted power. However, this improvement in mobile communications involves the development and testing of new wireless communications systems. Precise knowledge of the radio channel is an essential issue to design this new devices and, thus, reach such improvement in wireless communications. In general, the modeling of the radio channel can be undertaken in two main ways: Theoretically, where the channel is characterized by means of simulations and theoretical approaches. - Experimentally, where the radio channel is characterized by means of the analysis of measurements carried out in real scenarios. This thesis is mainly focused on the experimental characterization of the radio channel for systems with large bandwidth and multiple antennas (MIMO). However, characterizing experimentally the MIMO wideband channel implies the availability of adequate and accurate channel sounders.Universidad Politécnica de CartagenaUniversité des Sciences et Technologies de Lille (USTL)Programa de doctorado en Tecnologías de la Información y Comunicacione

    A Channel Sounder for Massive MIMO and mmWave Channels

    Get PDF

    Virtual Large-Scale Array Beamforming Analysis Using Measured Subarray Antenna Patterns

    Get PDF
    • …
    corecore