105 research outputs found

    Variable damping controller for a prosthetic knee during swing extension

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 39-40).Transfemoral amputees exhibit both increased metabolic consumption and gait asymmetry during level ground walking. A variable damping control strategy has been developed for swing extension in order to improve gait symmetry and reduce energy expenditure during level ground walking. Preliminary biomechanical studies suggest that the knee utilizes a variable damping control during swing extension. This thesis proposes a biologically inspired variable damping control strategy which can be simplified into a piecewise function with respect to the knee angle. The variable damping profile of the knee during swing extension has been modeled as an initial linear increase with respect to knee angle followed by a quadratic increase at the end of swing. A damping controller based on this proposed piecewise function has been implemented in a biomimetic, active, knee prosthesis (AAAKP) developed at MIT's Biomechatronics Lab. Preliminary studies on a unilateral, transfemoral amputee have shown that the AAAKP with the proposed damping control strategy is able to more closely emulate the damping profile of the unaffected leg, when compared to a conventional knee prosthesis (Otto Bock C-Leg®). This Initial study suggests that the proposed variable damping strategy for swing extension is able to more accurately emulate the joint mechanics of the unaffected knee. This work is intended to improve prosthetic knee behavior in order to reduce metabolic consumption and improve gait symmetry in transfemoral amputees during level ground walking.by Luke Matthewson Mooney.S.B

    Biomechanical Analysis of Lower Limb Prosthesis

    Get PDF
    This thesis presents a case study of the initial analysis of self-contained powered transfemoral (TF) prosthesis (AMPRO II). We analyze how the prosthesis influences the biomechanics of TF amputee walking gait. TF amputees have problems with increased energy expenditure and gait asymmetry, which leads to problems with their intact leg problems, such as osteoporosis and scoliosis. In order to assess the effectiveness of AMPRO II, we must analyze how it addresses these issues. This study will compare the amputee’s energy expenditure, kinematic gait symmetry (joint angles) and kinetic gait symmetry (joint reaction forces, and moments) while wearing the participant‘s own microprocessor-controlled TF prosthesis, and AMPRO II. Using AMPRO II enhanced the kinetic symmetry for the hip and knee flexion moment and enhanced kinematic symmetry for the knee and ankle angles. However, using AMPRO II led to increased energy expenditure and decreased symmetry in the hip angle and ankle moment. The findings from this study will lead to an understanding of how AMPRO II affects TF amputees and provide vital information that can be used in the future to improve the functionality of AMPRO II and future iterations of the device development

    Biomimetic agonist-antagonist active knee prosthesis

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 92-96).The loss of a limb is extremely debilitating. Unfortunately, today's assistive technologies are still far from providing fully functional artificial limb replacements. Although lower extremity prostheses are currently better able to give assistance than their upper-extremity counterparts, important locomotion problems still remain for leg amputees. Instability, gait asymmetry, decreased walking speeds and high metabolic energy costs are some of the main challenges requiring the development of a new kind of prosthetic device. These challenges point to the need for highly versatile, fully integrated lower-extremity powered prostheses that can replicate the biological behavior of the intact human leg. This thesis presents the design and evaluation of a novel biomimetic active knee prosthesis capable of emulating intact knee biomechanics during level-ground walking. The knee design is motivated by a mono-articular prosthetic knee model comprised of a variable damper and two series elastic clutch units spanning the knee joint. The powered knee system is comprised of two series-elastic actuators positioned in parallel in an agonist-antagonist configuration. This investigation hypothesizes that the biomimetic active-knee prosthesis, with a variable impedance control, can improve unilateral transfemoral amputee locomotion in level-ground walking, reducing the metabolic cost of walking at selfselected speeds. To evaluate this hypothesis, a preliminary study investigated the clinical impact of the active knee prosthesis on the metabolic cost of walking of four unilateral above-knee amputees. This preliminary study compared the antagonistic active knee prosthesis with subjects' prescribed knee prostheses. The subjects' prescribed prostheses encompass four of the leading prosthetic knee technologies commercially available, including passive and electronically controlled variable-damping prosthetic systems. Use of the novel biomimetic active knee prosthesis resulted in a metabolic cost reduction for all four subjects by an average of 5.8%. Kinematic and kinetic analyses indicate that the active knee can increase self-selected walking speed in addition to reducing upper body vertical displacement during walking by an average of 16%. The results of this investigation report for the first time a metabolic cost reduction when walking with a prosthetic system comprised of an electrically powered active knee and passive foot-ankle prostheses, as compared to walking with a conventional transfemoral prosthesis. With this work I aim to advance the field of biomechatronics, contributing to the development of integral assistive technologies that adapt to the needs of the physically challenged.by Ernesto Carlos Martinez-Villalpando.Ph.D

    Simulation And Control At the Boundaries Between Humans And Assistive Robots

    Get PDF
    Human-machine interaction has become an important area of research as progress is made in the fields of rehabilitation robotics, powered prostheses, and advanced exercise machines. Adding to the advances in this area, a novel controller for a powered transfemoral prosthesis is introduced that requires limited tuning and explicitly considers energy regeneration. Results from a trial conducted with an individual with an amputation show self-powering operation for the prosthesis while concurrently attaining basic gait fidelity across varied walking speeds. Experience in prosthesis development revealed that, though every effort is made to ensure the safety of the human subject, limited testing of such devices prior to human trials can be completed in the current research environment. Two complementary alternatives are developed to fill that gap. First, the feasibility of implementing impulse-momentum sliding mode control on a robot that can physically replace a human with a transfemoral amputation to emulate weight-bearing for initial prototype walking tests is established. Second, a more general human simulation approach is proposed that can be used in any of the aforementioned human-machine interaction fields. Seeking this general human simulation method, a unique pair of solutions for simulating a Hill muscle-actuated linkage system is formulated. These include using the Lyapunov-based backstepping control method to generate a closed-loop tracking simulation and, motivated by limitations observed in backstepping, an optimal control solver based on differential flatness and sum of squares polynomials in support of receding horizon controlled (e.g. model predictive control) or open-loop simulations. v The backstepping framework provides insight into muscle redundancy resolution. The optimal control framework uses this insight to produce a computationally efficient approach to musculoskeletal system modeling. A simulation of a human arm is evaluated in both structures. Strong tracking performance is achieved in the backstepping case. An exercise optimization application using the optimal control solver showcases the computational benefits of the solver and reveals the feasibility of finding trajectories for human-exercise machine interaction that can isolate a muscle of interest for strengthening

    Sensor-Based Adaptive Control and Optimization of Lower-Limb Prosthesis.

    Get PDF
    Recent developments in prosthetics have enabled the development of powered prosthetic ankles (PPA). The advent of such technologies drastically improved impaired gait by increasing balance and reducing metabolic energy consumption by providing net positive power. However, control challenges limit performance and feasibility of today’s devices. With addition of sensors and motors, PPA systems should continuously make control decisions and adapt the system by manipulating control parameters of the prostheses. There are multiple challenges in optimization and control of PPAs. A prominent challenge is the objective setup of the system and calibration parameters to fit each subject. Another is whether it is possible to detect changes in intention and terrain before prosthetic use and how the system should react and adapt to it. In the first part of this study, a model for energy expenditure was proposed using electromyogram (EMG) signals from the residual lower-limbs PPA users. The proposed model was optimized to minimize energy expenditure. Optimization was performed using a modified Nelder-Mead approach with a Latin Hypercube sampling. Results of the proposed method were compared to expert values and it was shown to be a feasible alternative for tuning in a shorter time. In the second part of the study, the control challenges regarding lack of adaptivity for PPAs was investigated. The current PPA system used is enhanced with impedance-controlled parameters that allow the system to provide different assistance. However, current systems are set to a fixed value and fail to acknowledge various terrain and intentions throughout the day. In this study, a pseudo-real-time adaptive control system was proposed to predict the changes in the gait and provide a smoother gait. The proposed control system used physiological, kinetic, and kinematic data and fused them to predict the change. The prediction was done using machine learning-based methods. Results of the study showed an accuracy of up to 89.7 percent for prediction of change for four different cases

    An Overview on Principles for Energy Efficient Robot Locomotion

    Get PDF
    Despite enhancements in the development of robotic systems, the energy economy of today's robots lags far behind that of biological systems. This is in particular critical for untethered legged robot locomotion. To elucidate the current stage of energy efficiency in legged robotic systems, this paper provides an overview on recent advancements in development of such platforms. The covered different perspectives include actuation, leg structure, control and locomotion principles. We review various robotic actuators exploiting compliance in series and in parallel with the drive-train to permit energy recycling during locomotion. We discuss the importance of limb segmentation under efficiency aspects and with respect to design, dynamics analysis and control of legged robots. This paper also reviews a number of control approaches allowing for energy efficient locomotion of robots by exploiting the natural dynamics of the system, and by utilizing optimal control approaches targeting locomotion expenditure. To this end, a set of locomotion principles elaborating on models for energetics, dynamics, and of the systems is studied

    Lower-limb amputees can reduce the energy cost of walking when assisted by an Active Pelvis Orthosis

    Get PDF
    Exoskeletons could compete with active prostheses as effective aids to reduce the increased metabolic demands faced by lower-limb amputees during locomotion. However, little evidence of their efficacy with amputees has been provided so far. In this paper, a portable hip exoskeleton has been tested with seven healthy subjects and two transfemoral amputees, with the final goal to verify whether a hip flexion-extension assistance could be effective in reducing the metabolic cost of walking. The metabolic power of the participants was estimated through indirect calorimetry during alternated repetitions of three treadmill-based walking conditions: without the exoskeleton (NoExo), with the exoskeleton in zero-torque mode (ExoTM) and with the exoskeleton providing hip flexion-extension assistance (ExoAM). The results showed that the exoskeleton reduced the net metabolic power of the two amputees in ExoAM with respect to NoExo, by 5.0% and 3.4%. With healthy subjects, a 5.5±3.1% average reduction in the metabolic power was observed during ExoAM compared to ExoTM (differences were not statistically significant), whereas ExoAM required 3.9±3.0% higher metabolic power than NoExo (differences were not statistically significant). These results provide initial evidence of the potential of exoskeletal technologies for assisting lower-limb amputees, thereby paving the way for further experimentations
    • …
    corecore