181 research outputs found

    Development of Internet Protocol Traceback Scheme for Detection of Denial-of-Service Attack

    Get PDF
    To mitigate the challenges that Flash Event (FE) poses to IP-Traceback techniques, this paper presents an IP Traceback scheme for detecting the source of a DoS attack based on Shark Smell Optimization Algorithm (SSOA). The developed model uses a discrimination policy with the hop-by-hop search. Random network topologies were generated using the WaxMan model in NS2 for different simulations of DoS attacks. Discrimination policies used by SSOA-DoSTBK for the attack source detection in each case were set up based on the properties of the detected attack packets. SSOA-DoSTBK was compared with a number of IP Traceback schemes for DoS attack source detection in terms of their ability to discriminate FE traffics from attack traffics and the detection of the source of Spoofed IP attack packets. SSOA-DoSTBK IP traceback scheme outperformed ACS-IPTBK that it was benchmarked with by 31.8%, 32.06%, and 28.45% lower FER for DoS only, DoS with FE, and spoofed DoS with FE tests respectively, and 4.76%, 11.6%, and 5.2% higher performance in attack path detection for DoS only, DoS with FE, and Spoofed DoS with FE tests, respectively. However, ACS-IPTBK was faster than SSOA-DoSTBK by 0.4%, 0.78%, and 1.2% for DoS only, DoS with FE, and spoofed DoS with FE tests, respectively. Keywords: DoS Attacks Detection, Denial-of-Service, Internet Protocol, IP Traceback, Flash Event, Optimization Algorithm

    Implementing Flash Event Discrimination in IP Traceback using Shark Smell Optimisation Algorithm

    Get PDF
     Denial of service attack and its variants are the largest ravaging network problems. They are used to cause damage to network by disrupting its services in order to harm a business or organization. Flash event is a network phenomenon that causes surge in normal network flow due to sudden increase in number of network users, To curtail the menace of the Denial of service attack it is pertinent to expose the perpetrator and take appropriate action against it. Internet protocol traceback is a network forensic tool that is used to identify source of an Internet protocol packet. Most of presently available Internet protocol traceback tools that are based on bio-inspired algorithm employ flow-based search method for tracing source of a Denial of service attack without facility to differentiate flash event from the attack. Surge in network due to flash event can mislead such a traceback tool that uses flow-based search. This work present a solution that uses hop-by-hop search with an incorporated discrimination policy implemented by shark smell optimization algorithm to differentiate the attack traffic from other traffics. It was tested on performance and convergence against an existing bio-inspired traceback tool that uses flow-base method and yielded outstanding results in all the test

    An Enhanced IP Trace Back Mechanism by using Particle Swarm System

    Get PDF
    Internet is the most powerful medium as on date, facilitating varied services to numerous users. It has also become the environment for cyber warfare where attacks of many types (financial, ideological, revenge) are being launched. �Network forensics is a sub-branch of digital forensics relating to the monitoring and analysis of computer network traffic for the purposes of information gathering, legal evidence, or intrusion detection.� Cloud Storage is a service where data is remotely maintained, managed, and backed up. The service is available to users over a network, which is usually the internet. It allows the user to store files online so that the user can access them from any location via the internet. The provider company makes them available to the user online by keeping the uploaded files on an external server. In this paper, a novel Digital Network Forensic Investigation Method is proposed. This paper will do changes in the analysis and investigation place of the network forensic. The investigation of the case will be based on the previous data collecting framework. The Spoofed IP address are classified by the previous framework and Enhanced IP trace back mechanism by Particle Swarm System is trace the real victim of the case in the network forensic

    Real-time cross-layer design for large-scale flood detection and attack trace-back mechanism in IEEE 802.11 wireless mesh networks

    Get PDF
    IEEE 802.11 WMN is an emerging next generation low-cost multi-hop wireless broadband provisioning technology. It has the capability of integrating wired and wireless networks such as LANs, IEEE 802.11 WLANs, IEEE 802.16 WMANs, and sensor networks. This kind of integration: large-scale coverage, decentralised and multi-hop architecture, multi-radios, multi-channel assignments, ad hoc connectivity support the maximum freedom of users to join or leave the network from anywhere and at anytime has made the situation far more complex. As a result broadband resources are exposed to various kinds of security attacks, particularly DoS attacks

    Identifying the attack sources of botnets for a renewable energy management system by using a revised locust swarm optimisation scheme

    Get PDF
    Distributed denial of service (DDoS) attacks often use botnets to generate a high volume of packets and adopt controlled zombies for flooding a victim’s network over the Internet. Analysing the multiple sources of DDoS attacks typically involves reconstructing attack paths between the victim and attackers by using Internet protocol traceback (IPTBK) schemes. In general, traditional route-searching algorithms, such as particle swarm optimisation (PSO), have a high convergence speed for IPTBK, but easily fall into the local optima. This paper proposes an IPTBK analysis scheme for multimodal optimisation problems by applying a revised locust swarm optimisation (LSO) algorithm to the reconstructed attack path in order to identify the most probable attack paths. For evaluating the effectiveness of the DDoS control centres, networks with a topology size of 32 and 64 nodes were simulated using the ns-3 tool. The average accuracy of the LS-PSO algorithm reached 97.06 for the effects of dynamic traffic in two experimental networks (number of nodes = 32 and 64). Compared with traditional PSO algorithms, the revised LSO algorithm exhibited a superior searching performance in multimodal optimisation problems and increased the accuracy in traceability analysis for IPTBK problems

    Protecting Cyber Physical Systems Using a Learned MAPE-K Model

    Get PDF

    A privacy preserving framework for cyber-physical systems and its integration in real world applications

    Get PDF
    A cyber-physical system (CPS) comprises of a network of processing and communication capable sensors and actuators that are pervasively embedded in the physical world. These intelligent computing elements achieve the tight combination and coordination between the logic processing and physical resources. It is envisioned that CPS will have great economic and societal impact, and alter the qualify of life like what Internet has done. This dissertation focuses on the privacy issues in current and future CPS applications. as thousands of the intelligent devices are deeply embedded in human societies, the system operations may potentially disclose the sensitive information if no privacy preserving mechanism is designed. This dissertation identifies data privacy and location privacy as the representatives to investigate the privacy problems in CPS. The data content privacy infringement occurs if the adversary can determine or partially determine the meaning of the transmitted data or the data stored in the storage. The location privacy, on the other hand, is the secrecy that a certain sensed object is associated to a specific location, the disclosure of which may endanger the sensed object. The location privacy may be compromised by the adversary through hop-by-hop traceback along the reverse direction of the message routing path. This dissertation proposes a public key based access control scheme to protect the data content privacy. Recent advances in efficient public key schemes, such as ECC, have already shown the feasibility to use public key schemes on low power devices including sensor motes. In this dissertation, an efficient public key security primitives, WM-ECC, has been implemented for TelosB and MICAz, the two major hardware platform in current sensor networks. WM-ECC achieves the best performance among the academic implementations. Based on WM-ECC, this dissertation has designed various security schemes, including pairwise key establishment, user access control and false data filtering mechanism, to protect the data content privacy. The experiments presented in this dissertation have shown that the proposed schemes are practical for real world applications. to protect the location privacy, this dissertation has considered two adversary models. For the first model in which an adversary has limited radio detection capability, the privacy-aware routing schemes are designed to slow down the adversary\u27s traceback progress. Through theoretical analysis, this dissertation shows how to maximize the adversary\u27s traceback time given a power consumption budget for message routing. Based on the theoretical results, this dissertation also proposes a simple and practical weighted random stride (WRS) routing scheme. The second model assumes a more powerful adversary that is able to monitor all radio communications in the network. This dissertation proposes a random schedule scheme in which each node transmits at a certain time slot in a period so that the adversary would not be able to profile the difference in communication patterns among all the nodes. Finally, this dissertation integrates the proposed privacy preserving framework into Snoogle, a sensor nodes based search engine for the physical world. Snoogle allows people to search for the physical objects in their vicinity. The previously proposed privacy preserving schemes are applied in the application to achieve the flexible and resilient privacy preserving capabilities. In addition to security and privacy, Snoogle also incorporates a number of energy saving and communication compression techniques that are carefully designed for systems composed of low-cost, low-power embedded devices. The evaluation study comprises of the real world experiments on a prototype Snoogle system and the scalability simulations

    Prevention Of Session Hijacking And IP spoofing With Sensor Nodes And Cryptographic Approach

    Get PDF
    Many web applications available today make use of some way of session to be able to communicate between the server and client. Unfortunately, it is possible for an attacker to exploit session in order to impersonate another user at a web application. The session hijacking is the most common type of attack in the infrastructure type of network. The confidentially is not providing under this attack to user information. Session hijacking attack is launched by making fake access point. If we detect the fake access point then we can stop session hijacking, and various techniques had been proposed. In this paper, we are giving a new mechanism to detect the fake access point with the use of sensor nodes in the network. In this mechanism we are also giving the protection against IP Spoofing by the use of public private key cryptography key exchange algorithm. We also discuss the results through simulations in Network Simulator 2
    corecore