2,382 research outputs found

    Ant colony optimisation algorithms for solving multi-objective power-aware metrics for mobile ad hoc networks

    Get PDF
    A mobile ad hoc network (MANET) is an infrastructure-less multi-hop network where each node communicates with other nodes directly or indirectly through intermediate nodes. Thus, all nodes in a MANET basically function as mobile routers participating in some routing protocol required for deciding and maintaining the routes. Since MANETs are infrastructure-less, self-organizing, rapidly deployable wireless networks, they are highly suitable for applications such as military tactical operations, search and rescue missions, disaster relief operations, and target tracking. Building such ad-hoc networks poses a significant technical challenge because of energy constraints and specifically in relation to the application of wireless network protocols. As a result of its highly dynamic and distributed nature, the routing layer within the wireless network protocol stack, presents one of the key technical challenges in MANETs. In particular, energy efficient routing may be the most important design criterion for MANETs since mobile nodes are powered by batteries with limited capacity and variable recharge frequency, according to application demand. In order to conserve power it is essential that a routing protocol be designed to guarantee data delivery even should most of the nodes be asleep and not forwarding packets to other nodes. Load distribution constitutes another important approach to the optimisation of active communication energy. Load distribution enables the maximisation of the network lifetime by facilitating the avoidance of over-utilised nodes when a route is in the process of being selected. Routing algorithms for mobile networks that attempt to optimise routes while at- tempting to retain a small message overhead and maximise the network lifetime has been put forward. However certain of these routing protocols have proved to have a negative impact on node and network lives by inadvertently over-utilising the energy resources of a small set of nodes in favour of others. The conservation of power and careful sharing of the cost of routing packets would ensure an increase in both node and network lifetimes. This thesis proposes simultaneously, by using an ant colony optimisation (ACO) approach, to optimise five power-aware metrics that do result in energy-efficient routes and also to maximise the MANET's lifetime while taking into consideration a realistic mobility model. By using ACO algorithms a set of optimal solutions - the Pareto-optimal set - is found. This thesis proposes five algorithms to solve the multi-objective problem in the routing domain. The first two algorithms, namely, the energy e±ciency for a mobile network using a multi-objective, ant colony optimisation, multi-pheromone (EEMACOMP) algorithm and the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-heuristic (EEMACOMH) algorithm are both adaptations of multi-objective, ant colony optimisation algorithms (MOACO) which are based on the ant colony system (ACS) algorithm. The new algorithms are constructive which means that in every iteration, every ant builds a complete solution. In order to guide the transition from one state to another, the algorithms use pheromone and heuristic information. The next two algorithms, namely, the energy efficiency for a mobile network using a multi-objective, MAX-MIN ant system optimisation, multi-pheromone (EEMMASMP) algorithm and the energy efficiency for a mobile network using a multi-objective, MAX- MIN ant system optimisation, multi-heuristic (EEMMASMH) algorithm, both solve the above multi-objective problem by using an adaptation of the MAX-MIN ant system optimisation algorithm. The last algorithm implemented, namely, the energy efficiency for a mobile network using a multi-objective, ant colony optimisation, multi-colony (EEMACOMC) algorithm uses a multiple colony ACO algorithm. From the experimental results the final conclusions may be summarised as follows: Ant colony, multi-objective optimisation algorithms are suitable for mobile ad hoc networks. These algorithms allow for high adaptation to frequent changes in the topology of the network. All five algorithms yielded substantially better results than the non-dominated sorting genetic algorithm (NSGA-II) in terms of the quality of the solution. All the results prove that the EEMACOMP outperforms the other four ACO algorithms as well as the NSGA-II algorithm in terms of the number of solutions, closeness to the true Pareto front and diversity. Thesis (PhD)--University of Pretoria, 2010.Computer Scienceunrestricte

    An ACO Algorithm for Effective Cluster Head Selection

    Full text link
    This paper presents an effective algorithm for selecting cluster heads in mobile ad hoc networks using ant colony optimization. A cluster in an ad hoc network consists of a cluster head and cluster members which are at one hop away from the cluster head. The cluster head allocates the resources to its cluster members. Clustering in MANET is done to reduce the communication overhead and thereby increase the network performance. A MANET can have many clusters in it. This paper presents an algorithm which is a combination of the four main clustering schemes- the ID based clustering, connectivity based, probability based and the weighted approach. An Ant colony optimization based approach is used to minimize the number of clusters in MANET. This can also be considered as a minimum dominating set problem in graph theory. The algorithm considers various parameters like the number of nodes, the transmission range etc. Experimental results show that the proposed algorithm is an effective methodology for finding out the minimum number of cluster heads.Comment: 7 pages, 5 figures, International Journal of Advances in Information Technology (JAIT); ISSN: 1798-2340; Academy Publishers, Finlan

    Secure and robust multi-constrained QoS aware routing algorithm for VANETs

    Get PDF
    Secure QoS routing algorithms are a fundamental part of wireless networks that aim to provide services with QoS and security guarantees. In Vehicular Ad hoc Networks (VANETs), vehicles perform routing functions, and at the same time act as end-systems thus routing control messages are transmitted unprotected over wireless channels. The QoS of the entire network could be degraded by an attack on the routing process, and manipulation of the routing control messages. In this paper, we propose a novel secure and reliable multi-constrained QoS aware routing algorithm for VANETs. We employ the Ant Colony Optimisation (ACO) technique to compute feasible routes in VANETs subject to multiple QoS constraints determined by the data traffic type. Moreover, we extend the VANET-oriented Evolving Graph (VoEG) model to perform plausibility checks on the exchanged routing control messages among vehicles. Simulation results show that the QoS can be guaranteed while applying security mechanisms to ensure a reliable and robust routing service

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan
    corecore