563 research outputs found

    BSRS: Best Stable Route Selection Algorithm for Wireless Sensor Network Applications

    Get PDF
    Topological changes in sensor networks frequently render routing paths unusable. Such recurrent path failures have detrimental effects on the network ability to support QoS-driven services. Because of connectivity richness in sensor networks, there often exist multiple paths between a source and a destination. Since many applications require uninterrupted connectivity of a session, the ability to find long-living paths can be very useful. In this paper, we propose Best Stable Route Selection (BSRS) approach based on Artificial Bee Colony based search algorithm, ensures that contributes stable quality performance of network and to calculate the best stable path services randomly based on QoS parameter requirements and existing circulation load; so that efficient route selection can easily capture by designing of proposed BSRS approach. The implementation of the proposed BSRS technique is implemented using NS2 simulation environment and the AODV routing protocol is used to incorporate the proposed algorithm. The experimental results are measured in terms of end to end delay, throughput, packet delivery ratio, and energy consumption and routing overhead. The results show the proposed BSRS algorithm improves the flexibility of network node and performance of network when multiple inefficient paths exist

    Based on Pause Time Comparative Analysis made among Bee-Ant Colony Optimized Routing (BACOR) Vs Existing Routing Protocols for Scalable Mobile Ad Hoc Networks (MANETs)

    Get PDF
    In this paper based on swarm intelligence a new approach for an on demand ad-hoc routing algorithm is proposed. The foraging behavior of Ant colony optimization and Bee colony optimization, which are the subset of swarm intelligence and considering the ability of simple ants to solve complex problems by cooperation. Several algorithms which are based on ant colony problems were introduced in the literatures to solve different problems, e.g., optimization problems. The proposed algorithm is compared and proven by results that the approach has the potential to become an appropriate routing tactics for mobile ad-hoc networks. The results were presented based on the simulations made with the implementation in ns-2. Keywords:BACOR, Bee Routing, Ant Routing, Bee-Ant Routin

    Towards Reliable Multi-Path Routing : An Integrated Cooperation Model for Drones

    Get PDF
    Ad-hoc networks have evolved into a vital wireless communication component by offering an adaptable infrastructure suitable for various scenarios in our increasingly interconnected and mobile world. However, this adaptability also exposes these networks to security challenges, given their dynamic nature, where nodes frequently join and leave. This dynamism is advantageous but presents resource constraints and vulnerability to malicious nodes, impacting data transmission reliability and security. In this context, this article explores the development of a secure routing protocol for Ad-hoc networks based on a cooperation reinforcement model to reduce the degradation of routing performance. We leverage the reputation of nodes as an additional security layer to monitor their behavior and evaluate their level of reliability. To exemplify our solution, we focus on drone fleets (UAVs) as a pertinent case study. Drones frequently operate in dynamic, challenging environments, relying on Ad-hoc networks for communication. They serve as an apt illustration, highlighting the complexities of the issue and the efficacy of our proposed remedy. The simulation results show the effectiveness of our proposed solution compared to stae-of-the-artsolutions

    Multipath Routing in VANET: Multi-Agent based Approach

    Get PDF
    In VANET routing of data is a exciting task owing to the high dynamics involved in this network. Delivery of data to the projected destination turns out to be very puzzling. Single path routing suffers from drawbacks like unreliability and etc. To manage such situation multipath data delivery is very nominal. In multipath routing more than one path discovered between source and destination node. Data packet can be sent simultaneously in all paths or data packet can be send by selecting path one after another. It is up to the routing algorithm to select path thoughtfully to deliver data proficiently. However existing multipath routing protocols even though compute multipath, only one path will be engaged in actual communication at any given time. Hence this work proposes Multipath Routing in VANET: Multi-agent based Approach which calculates multiple paths amongst source and destination. Further, all such computed paths will be employed for information dissemination. NS2 simulation of the proposed approach in realistic mobility models show that it can select more stable link and improve the network performance

    Receiver-based ad hoc on demand multipath routing protocol for mobile ad hoc networks

    Get PDF
    Decreasing the route rediscovery time process in reactive routing protocols is challenging in mobile ad hoc networks. Links between nodes are continuously established and broken because of the characteristics of the network. Finding multiple routes to increase the reliability is also important but requires a fast update, especially in high traffic load and high mobility where paths can be broken as well. The sender node keeps re-establishing path discovery to find new paths, which makes for long time delay. In this paper we propose an improved multipath routing protocol, called Receiver-based ad hoc on demand multipath routing protocol (RB-AOMDV), which takes advantage of the reliability of the state of the art ad hoc on demand multipath distance vector (AOMDV) protocol with less re-established discovery time. The receiver node assumes the role of discovering paths when finding data packets that have not been received after a period of time. Simulation results show the delay and delivery ratio performances are improved compared with AOMDV

    Situation-Aware QoS Routing Algorithm for Vehicular Ad hoc Networks

    Get PDF
    A wide range of services has been developed for Vehicular Ad hoc Networks (VANETs) ranging from safety to infotainment applications. An essential requirement for such services is that they are offered with Quality of Service (QoS) guarantees in terms of service reliability and availability. Searching for feasible routes subject to multiple QoS constraints is in general an NP-hard problem. Besides, routing reliability needs to be paid special attention as communication links frequently break in VANETs. In this paper, we propose employing the Situational Awareness (SA) concept and an Ant Colony System (ACS) based algorithm to develop a Situation-Aware Multi-constrained QoS (SAMQ) routing algorithm for VANETs. SAMQ aims to compute feasible routes between the communicating vehicles subject to multiple QoS constraints and pick the best computed route, if such a route exists. To mitigate the risks inherited from selecting the best computed route that may turn out to fail at any moment, SAMQ utilises the SA levels and ACS mechanisms to prepare certain countermeasures with the aim of assuring a reliable data transmission. Simulation results demonstrate that SAMQ is capable of achieving a reliable data transmission as compared to the existing QoS routing algorithms even when the network topology is highly dynamic
    corecore