259 research outputs found

    Medical Diagnosis with Multimodal Image Fusion Techniques

    Get PDF
    Image Fusion is an effective approach utilized to draw out all the significant information from the source images, which supports experts in evaluation and quick decision making. Multi modal medical image fusion produces a composite fused image utilizing various sources to improve quality and extract complementary information. It is extremely challenging to gather every piece of information needed using just one imaging method. Therefore, images obtained from different modalities are fused Additional clinical information can be gleaned through the fusion of several types of medical image pairings. This study's main aim is to present a thorough review of medical image fusion techniques which also covers steps in fusion process, levels of fusion, various imaging modalities with their pros and cons, and  the major scientific difficulties encountered in the area of medical image fusion. This paper also summarizes the quality assessments fusion metrics. The various approaches used by image fusion algorithms that are presently available in the literature are classified into four broad categories i) Spatial fusion methods ii) Multiscale Decomposition based methods iii) Neural Network based methods and iv) Fuzzy Logic based methods. the benefits and pitfalls of the existing literature are explored and Future insights are suggested. Moreover, this study is anticipated to create a solid platform for the development of better fusion techniques in medical applications

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Registration of Multisensor Images through a Conditional Generative Adversarial Network and a Correlation-Type Similarity Measure

    Get PDF
    The automatic registration of multisensor remote sensing images is a highly challenging task due to the inherently different physical, statistical, and textural characteristics of the input data. Information-theoretic measures are often used to favor comparing local intensity distributions in the images. In this paper, a novel method based on the combination of a deep learning architecture and a correlation-type area-based functional is proposed for the registration of a multisensor pair of images, including an optical image and a synthetic aperture radar (SAR) image. The method makes use of a conditional generative adversarial network (cGAN) in order to address image-to-image translation across the optical and SAR data sources. Then, once the optical and SAR data are brought to a common domain, an area-based â„“2 similarity measure is used together with the COBYLA constrained maximization algorithm for registration purposes. While correlation-type functionals are usually ineffective in the application to multisensor registration, exploiting the image-to-image translation capabilities of cGAN architectures allows moving the complexity of the comparison to the domain adaptation step, thus enabling the use of a simple â„“2 similarity measure, favoring high computational efficiency, and opening the possibility to process a large amount of data at runtime. Experiments with multispectral and panchromatic optical data combined with SAR images suggest the effectiveness of this strategy and the capability of the proposed method to achieve more accurate registration as compared to state-of-the-art approaches

    Poor Quality Fingerprint Recognition Based on Wave Atom Transform

    Get PDF
    Fingerprint is considered the most practical biometrics due to some specific features which make them widely accepted. Reliable feature extraction from poor quality fingerprint images is still the most challenging problem in fingerprint recognition system. Extracting features from poor fingerprint images is not an easy task. Recently, Multi-resolution transforms techniques have been widely used as a feature extractor in the field of biometric recognition. In this paper we develop a complete and an efficient fingerprint recognition system that can deal with poor quality fingerprint images. Identification of poor quality fingerprint images needs reliable preprocessing stage, in which an image alignment, segmentation, and enhancement processes are performed. We improve a popular enhancement technique by replacing the segmentation algorithm with another new one. We use Waveatom transforms in extracting distinctive features from the enhanced fingerprint images. The selected features are matched throw K-Nearest neighbor classifier techniques. We test our methodology in 114 subjects selected from a very challenges database; CASIA; and we achieve a high recognition rate of about 99.5%

    Shape localization, quantification and correspondence using Region Matching Algorithm

    Get PDF
    We propose a method for local, region-based matching of planar shapes, especially as those shapes that change over time. This is a problem fundamental to medical imaging, specifically the comparison over time of mammograms. The method is based on the non-emergence and non-enhancement of maxima, as well as the causality principle of integral invariant scale space. The core idea of our Region Matching Algorithm (RMA) is to divide a shape into a number of “salient” regions and then to compare all such regions for local similarity in order to quantitatively identify new growths or partial/complete occlusions. The algorithm has several advantages over commonly used methods for shape comparison of segmented regions. First, it provides improved key-point alignment for optimal shape correspondence. Second, it identifies localized changes such as new growths as well as complete/partial occlusion in corresponding regions by dividing the segmented region into sub-regions based upon the extrema that persist over a sufficient range of scales. Third, the algorithm does not depend upon the spatial locations of mammographic features and eliminates the need for registration to identify salient changes over time. Finally, the algorithm is fast to compute and requires no human intervention. We apply the method to temporal pairs of mammograms in order to detect potentially important differences between them

    Shape description and matching using integral invariants on eccentricity transformed images

    Get PDF
    Matching occluded and noisy shapes is a problem frequently encountered in medical image analysis and more generally in computer vision. To keep track of changes inside the breast, for example, it is important for a computer aided detection system to establish correspondences between regions of interest. Shape transformations, computed both with integral invariants (II) and with geodesic distance, yield signatures that are invariant to isometric deformations, such as bending and articulations. Integral invariants describe the boundaries of planar shapes. However, they provide no information about where a particular feature lies on the boundary with regard to the overall shape structure. Conversely, eccentricity transforms (Ecc) can match shapes by signatures of geodesic distance histograms based on information from inside the shape; but they ignore the boundary information. We describe a method that combines the boundary signature of a shape obtained from II and structural information from the Ecc to yield results that improve on them separately

    Algorithm for Fault Location and Classification on Parallel Transmission Line using Wavelet based on Clarke’s Transformation

    Get PDF
    This paper proposed a new algorithm for fault location and classification using wavelet based on Clarke’s transformation to obtain the fault current. This novel method of fault current approach is studied by comparing the use of the glide path of the fault voltage. The current alpha and beta (Current Mode) were used to transform the signal using discrete wavelet transform (DWT). The fault location was determined by using the Clarke’s transformation, and then turned into a wavelet, which was very precise and thorough. The most accurate was the mother wavelet Db4 which had the fastest time and smallest error detection when compared with the other wavelet mothers. In this study, the Clarke’s transformation is also compared with the Karenbauer’s, which has produced results with similar error percentage. The simulation results using PSCAD / EMTDC software showed that the proposed algorithm could distinguish internal and external faults to get the current signal in the transformation of a signal fault

    Automatic landslide detection using Dempster–Shafer theory from LiDAR-derived data and orthophotos

    Full text link
    © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. A good landslide inventory map is a prerequisite for landslide hazard and risk analysis. In tropical countries, such as Malaysia, preparation of the landslide inventory is a challenging task because of the rapid growth of vegetation. Thus, it is crucial to use rapid and accurate technique and effective parameters. For this purpose, Dempster Shafer theory (DST) was applied in fusing high resolution LiDAR derived data products and Greenness index derived from orthophoto imagery. Two sites were selected, for the implementation and evaluation of the DST model; site “A” for DST implementation and site “B” for the comparison. For model implementation, vegetation index, slope and height were used as effective parameters for identifying automatic landslide detection. Two type of DST based fusions were evaluated; (greenness and height) and (greenness and slope). Furthermore, validation techniques were used to validate the accuracy are confusion matrix and area under the curve. The overall accuracy of the first and second evaluated fusions were (73.4% and 84.33%), and area under the curve were (0.76 and 0.81) respectively. Additionally, the result was compared with Random Forest (RF) based detection approach. The results showed that DST does not require a priori knowledge
    • …
    corecore