3,815 research outputs found

    Ant colony optimization for resource-constrained project scheduling

    Get PDF
    An ant colony optimization (ACO) approach for the resource-constrained project scheduling problem (RCPSP) is presented. Several new features that are interesting for ACO in general are proposed and evaluated. In particular, the use of a combination of two pheromone evaluation methods by the ants to find new solutions, a change of the influence of the heuristic on the decisions of the ants during the run of the algorithm, and the option that an elitist ant forgets the best-found solution are studied. We tested the ACO algorithm on a set of large benchmark problems from the Project Scheduling Library. Compared to several other heuristics for the RCPSP, including genetic algorithms, simulated annealing, tabu search, and different sampling methods, our algorithm performed best on average. For nearly one-third of all benchmark problems, which were not known to be solved optimally before, the algorithm was able to find new best solutions

    Multi-Mode Resource Constrained Project Scheduling Using Differential Evolution Algorithm

    Get PDF
    Project scheduling is a tool that manages the work and resources associated with delivering a project on time. Project scheduling is important to organize, keep track of the finished and in-progress tasks and manage the quality of work delivered. However, many problems arise during project scheduling. Minimizing project duration is the primary objective. Project cost is also a critical matter, but there will always be a trade off between project time and cost (Ghoddousiet et al., 2013), so scheduling activities can be challenging due to precedence activities, resources, and execution modes. Schedule reduction is heavily dependent on the availability of resources (Zhuo et al., 2013). There have been several methods used to solve the project scheduling problem. This dissertation will focus on finding the optimal solution with minimum makespan at lowest possible cost. Schedules should help manage the project and not give a general estimate of the project duration. It is important to have realistic time estimates and resources to give accurate schedules. Generally, project scheduling problems are challenging from a computational point of view (Brucker et al., 1999). This dissertation applies the differential evolution algorithm (DEA) to multi mode, multi resource constrained project scheduling problems. DEA was applied to a common 14- task network through different scenarios, which includes Multi Mode Single Non Renewable Resource Constrained Project Scheduling Problem (MMSNR) and Multi Mode Multiple Non Renewable Resource Constrained Project Scheduling Problem (MMMNR). DEA was also applied when each scenario was faced with a weekly constraint and when cost and time contingencies such as budget drops or change in expected project completion times interfere with the initial project scheduling plan. A benchmark problem was also presented to compare the DEA results with other optimization techniques such as a genetic algorithm (GA), a particle swarm optimization (PSO) and ant colony optimization (ACO). The results indicated that our DEA performs at least as good as these techniques as far as the project time is concerned and outperforms them in computational times and success rates. Finally, a pareto frontier was investigated, resulting in optimal solutions for a multi objective problem focusing on the tradeoff of the constrained set of parameters

    Deadline Constrained Cloud Computing Resources Scheduling through an Ant Colony System Approach

    Get PDF
    Cloud computing resources scheduling is essential for executing workflows in the cloud platform because it relates to both execution time and execution cost. In this paper, we adopt a model that optimizes the execution cost while meeting deadline constraints. In solving this problem, we propose an Improved Ant Colony System (IACS) approach featuring two novel strategies. Firstly, a dynamic heuristic strategy is used to calculate a heuristic value during an evolutionary process by taking the workflow topological structure into consideration. Secondly, a double search strategy is used to initialize the pheromone and calculate the heuristic value according to the execution time at the beginning and to initialize the pheromone and calculate heuristic value according to the execution cost after a feasible solution is found. Therefore, the proposed IACS is adaptive to the search environment and to different objectives. We have conducted extensive experiments based on workflows with different scales and different cloud resources. We compare the result with a particle swarm optimization (PSO) approach and a dynamic objective genetic algorithm (DOGA) approach. Experimental results show that IACS is able to find better solutions with a lower cost than both PSO and DOGA do on various scheduling scales and deadline conditions

    Simplifying Multiproject Scheduling Problem Based on Design Structure Matrix and Its Solution by an Improved aiNet Algorithm

    Get PDF
    Managing multiple project is a complex task involving the unrelenting pressures of time and cost. Many studies have proposed various tools and techniques for single-project scheduling; however, the literature further considering multimode or multiproject issues occurring in the real world is rather scarce. In this paper, design structure matrix (DSM) and an improved artificial immune network algorithm (aiNet) are developed to solve a multi-mode resource-constrained scheduling problem. Firstly, the DSM is used to simplify the mathematic model of multi-project scheduling problem. Subsequently, aiNet algorithm comprised of clonal selection, negative selection, and network suppression is adopted to realize the local searching and global searching, which will assure that it has a powerful searching ability and also avoids the possible combinatorial explosion. Finally, the approach is tested on a set of randomly cases generated from ProGen. The computational results validate the effectiveness of the proposed algorithm comparing with other famous metaheuristic algorithms such as genetic algorithm (GA), simulated annealing algorithm (SA), and ant colony optimization (ACO)

    Mode-Based versus Activity-Based Search for a Nonredundant Resolution of the Multimode Resource-Constrained Project Scheduling Problem

    Get PDF
    [EN] This paper addresses an energy-based extension of the Multimode Resource-Constrained Project Scheduling Problem (MRCPSP) called MRCPSP-ENERGY. This extension considers the energy consumption as an additional resource that leads to different execution modes (and durations) of the activities. Consequently, different schedules can be obtained. The objective is to maximize the efficiency of the project, which takes into account the minimization of both makespan and energy consumption. This is a well-known NP-hard problem, such that the application of metaheuristic techniques is necessary to address real-size problems in a reasonable time. This paper shows that the Activity List representation, commonly used in metaheuristics, can lead to obtaining many redundant solutions, that is, solutions that have different representations but are in fact the same. This is a serious disadvantage for a search procedure. We propose a genetic algorithm(GA) for solving the MRCPSP-ENERGY, trying to avoid redundant solutions by focusing the search on the execution modes, by using the Mode List representation. The proposed GA is evaluated on different instances of the PSPLIB-ENERGY library and compared to the results obtained by both exact methods and approximate methods reported in the literature. This library is an extension of the well-known PSPLIB library, which contains MRCPSP-ENERGY test cases.This paper has been partially supported by the Spanish Research Projects TIN2013-46511-C2-1-P and TIN2016-80856-R.Morillo-Torres, D.; Barber, F.; Salido, MA. (2017). Mode-Based versus Activity-Based Search for a Nonredundant Resolution of the Multimode Resource-Constrained Project Scheduling Problem. Mathematical Problems in Engineering. 2017:1-15. https://doi.org/10.1155/2017/4627856S1152017Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18-19), 4247-4271. doi:10.1080/00207540701450013Hartmann, S., & Sprecher, A. (1996). A note on «hierarchical models for multi-project planning and scheduling». European Journal of Operational Research, 94(2), 377-383. doi:10.1016/0377-2217(95)00158-1Christofides, N., Alvarez-Valdes, R., & Tamarit, J. M. (1987). Project scheduling with resource constraints: A branch and bound approach. European Journal of Operational Research, 29(3), 262-273. doi:10.1016/0377-2217(87)90240-2Zhu, G., Bard, J. F., & Yu, G. (2006). A Branch-and-Cut Procedure for the Multimode Resource-Constrained Project-Scheduling Problem. INFORMS Journal on Computing, 18(3), 377-390. doi:10.1287/ijoc.1040.0121Kolisch, R., & Hartmann, S. (1999). Heuristic Algorithms for the Resource-Constrained Project Scheduling Problem: Classification and Computational Analysis. International Series in Operations Research & Management Science, 147-178. doi:10.1007/978-1-4615-5533-9_7Józefowska, J., Mika, M., Różycki, R., Waligóra, G., & Węglarz, J. (2001). Annals of Operations Research, 102(1/4), 137-155. doi:10.1023/a:1010954031930Bouleimen, K., & Lecocq, H. (2003). A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research, 149(2), 268-281. doi:10.1016/s0377-2217(02)00761-0Alcaraz, J., Maroto, C., & Ruiz, R. (2003). Solving the Multi-Mode Resource-Constrained Project Scheduling Problem with genetic algorithms. Journal of the Operational Research Society, 54(6), 614-626. doi:10.1057/palgrave.jors.2601563Zhang, H., Tam, C. M., & Li, H. (2006). Multimode Project Scheduling Based on Particle Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 21(2), 93-103. doi:10.1111/j.1467-8667.2005.00420.xJarboui, B., Damak, N., Siarry, P., & Rebai, A. (2008). A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation, 195(1), 299-308. doi:10.1016/j.amc.2007.04.096Li, H., & Zhang, H. (2013). Ant colony optimization-based multi-mode scheduling under renewable and nonrenewable resource constraints. Automation in Construction, 35, 431-438. doi:10.1016/j.autcon.2013.05.030Lova, A., Tormos, P., Cervantes, M., & Barber, F. (2009). An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. International Journal of Production Economics, 117(2), 302-316. doi:10.1016/j.ijpe.2008.11.002Peteghem, V. V., & Vanhoucke, M. (2010). A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. European Journal of Operational Research, 201(2), 409-418. doi:10.1016/j.ejor.2009.03.034Węglarz, J., Józefowska, J., Mika, M., & Waligóra, G. (2011). Project scheduling with finite or infinite number of activity processing modes – A survey. European Journal of Operational Research, 208(3), 177-205. doi:10.1016/j.ejor.2010.03.037Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research, 174(1), 23-37. doi:10.1016/j.ejor.2005.01.065Debels, D., De Reyck, B., Leus, R., & Vanhoucke, M. (2006). A hybrid scatter search/electromagnetism meta-heuristic for project scheduling. European Journal of Operational Research, 169(2), 638-653. doi:10.1016/j.ejor.2004.08.020Paraskevopoulos, D. C., Tarantilis, C. D., & Ioannou, G. (2012). Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Systems with Applications, 39(4), 3983-3994. doi:10.1016/j.eswa.2011.09.062Drexl, A. (1991). Scheduling of Project Networks by Job Assignment. Management Science, 37(12), 1590-1602. doi:10.1287/mnsc.37.12.1590BOCTOR, F. F. (1996). Resource-constrained project scheduling by simulated annealing. International Journal of Production Research, 34(8), 2335-2351. doi:10.1080/0020754960890502

    An efficient ant colony system based on receding horizon control for the aircraft arrival sequencing and scheduling problem

    Get PDF
    The aircraft arrival sequencing and scheduling (ASS) problem is a salient problem in air traffic control (ATC), which proves to be nondeterministic polynomial (NP) hard. This paper formulates the ASS problem in the form of a permutation problem and proposes a new solution framework that makes the first attempt at using an ant colony system (ACS) algorithm based on the receding horizon control (RHC) to solve it. The resultant RHC-improved ACS algorithm for the ASS problem (termed the RHC-ACS-ASS algorithm) is robust, effective, and efficient, not only due to that the ACS algorithm has a strong global search ability and has been proven to be suitable for these kinds of NP-hard problems but also due to that the RHC technique can divide the problem with receding time windows to reduce the computational burden and enhance the solution's quality. The RHC-ACS-ASS algorithm is extensively tested on the cases from the literatures and the cases randomly generated. Comprehensive investigations are also made for the evaluation of the influences of ACS and RHC parameters on the performance of the algorithm. Moreover, the proposed algorithm is further enhanced by using a two-opt exchange heuristic local search. Experimental results verify that the proposed RHC-ACS-ASS algorithm generally outperforms ordinary ACS without using the RHC technique and genetic algorithms (GAs) in solving the ASS problems and offers high robustness, effectiveness, and efficienc

    The Project Scheduling Problem with Non-Deterministic Activities Duration: A Literature Review

    Get PDF
    Purpose: The goal of this article is to provide an extensive literature review of the models and solution procedures proposed by many researchers interested on the Project Scheduling Problem with nondeterministic activities duration. Design/methodology/approach: This paper presents an exhaustive literature review, identifying the existing models where the activities duration were taken as uncertain or random parameters. In order to get published articles since 1996, was employed the Scopus database. The articles were selected on the basis of reviews of abstracts, methodologies, and conclusions. The results were classified according to following characteristics: year of publication, mathematical representation of the activities duration, solution techniques applied, and type of problem solved. Findings: Genetic Algorithms (GA) was pointed out as the main solution technique employed by researchers, and the Resource-Constrained Project Scheduling Problem (RCPSP) as the most studied type of problem. On the other hand, the application of new solution techniques, and the possibility of incorporating traditional methods into new PSP variants was presented as research trends. Originality/value: This literature review contents not only a descriptive analysis of the published articles but also a statistical information section in order to examine the state of the research activity carried out in relation to the Project Scheduling Problem with non-deterministic activities duration.Peer Reviewe

    OPTIMIZING PROJECT TIME-COST-QUALITY BY USING GENETIC ALGORITHMS

    Get PDF
    Project management causes the problem of efficient resource assignment, activity, time constraints and relationships between activities. Traditional scheduling methods like CPM and PERT are incomplete tools to use in practice because they do not consider constraints regarding resources and cannot be realistic as they consider infinite resources. Optimization of project time-costs-quality is very complex and can be achieved by using meta-heuristic methods as Genetic Algorithms, Ant Algorithm, Tabu Search. In this article we study the state of the art in this domain, define the optimization problem we want to solve and propose some improvements for a genetic algorithm, starting from GENOCOP I (Genetic Algorithm for Numerical Optimizations of Constrained Problems) developed by Michalewicz and Janikow[12], later improved to GENOCOP V (Suzuki [9]).planning and scheduling, time-costs trade-off problem, genetic algorithms

    Resource-constrained project scheduling with ant colony optimization algorithm

    Get PDF
    Resource allocation commonly becomes one of the critical problems in project scheduling. This issue usually occurs because project managers estimate the schedule of activities and network time without considering resource availability. Resource-Constrained Project Scheduling Problem (RCPSP) links to the allocation of resource or set of resources into certain activities in order to accomplish particular objectives. Various approaches have been performed to overcome RCPSP, including the heuristic approach. In this research, we used the Ant Colony Algorithm in solving RCPSP. We used 11 examples of projects with dissimilarity in-network and several activities. The implementation of the Ant Colony Algorithm resulted in the percentage of a near-optimal solution of 63.64%. Besides, the duration obtained from the algorithm above the manual scheduling (assumed optimal) was only 4.29%. Sensitivity analysis was performed to understand how substantial the changes of ACO parameters influenced the result obtained from the algorithm. Based on the result, we could conclude that the parameters of ACO have no significant effect to project duration
    corecore