531 research outputs found

    Learning Multi-Tree Classification Models with Ant Colony Optimization

    Get PDF
    Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial optimization problems, inspired by the behaviour of biological ant colonies. One of the successful applications of ACO is learning classification models (classifiers). A classifier encodes the relationships between the input attribute values and the values of a class attribute in a given set of labelled cases and it can be used to predict the class value of new unlabelled cases. Decision trees have been widely used as a type of classification model that represent comprehensible knowledge to the user. In this paper, we propose the use of ACO-based algorithms for learning an extended multi-tree classification model, which consists of multiple decision trees, one for each class value. Each class-based decision trees is responsible for discriminating between its class value and all other values available in the class domain. Our proposed algorithms are empirically evaluated against well-known decision trees induction algorithms, as well as the ACO-based Ant-Tree-Miner algorithm. The results show an overall improvement in predictive accuracy over 32 benchmark datasets. We also discuss how the new multi-tree models can provide the user with more understanding and knowledge-interpretability in a given domain

    Investigating Evaluation Measures in Ant Colony Algorithms for Learning Decision Tree Classifiers

    Get PDF
    Ant-Tree-Miner is a decision tree induction algorithm that is based on the Ant Colony Optimization (ACO) meta- heuristic. Ant-Tree-Miner-M is a recently introduced extension of Ant-Tree-Miner that learns multi-tree classification models. A multi-tree model consists of multiple decision trees, one for each class value, where each class-based decision tree is responsible for discriminating between its class value and all other values present in the class domain (one vs. all). In this paper, we investigate the use of 10 different classification quality evaluation measures in Ant-Tree-Miner-M, which are used for both candidate model evaluation and model pruning. Our experimental results, using 40 popular benchmark datasets, identify several quality functions that substantially improve on the simple Accuracy quality function that was previously used in Ant-Tree-Miner-M

    ADR-Miner: An Ant-based data reduction algorithm for classification

    Get PDF
    Classi cation is a central problem in the elds of data mining and machine learning. Using a training set of labeled instances, the task is to build a model (classi er) that can be used to predict the class of new unlabeled instances. Data preparation is crucial to the data mining process, and its focus is to improve the tness of the training data for the learning algorithms to produce more e ective classi ers. Two widely applied data preparation methods are feature selection and instance selection, which fall under the umbrella of data reduction. For my research I propose ADR-Miner, a novel data reduction algorithm that utilizes ant colony optimization (ACO). ADR-Miner is designed to perform instance selection to improve the predictive e ectiveness of the constructed classi cation models. Two versions of ADR-Miner are developed: a base version that uses a single classi cation algorithm during both training and testing, and an extended version which uses separate classi cation algorithms for each phase. The base version of the ADR-Miner algorithm is evaluated against 20 data sets using three classi cation algorithms, and the results are compared to a benchmark data reduction algorithm. The non-parametric Wilcoxon signed-ranks test will is employed to gauge the statistical signi cance of the results obtained. The extended version of ADR-Miner is evaluated against 37 data sets using pairings from fi ve classi cation algorithms and these results are benchmarked against the performance of the classi cation algorithms but without reduction applied as pre-processing. Keywords: Ant Colony Optimization (ACO), Data Mining, Classi cation, Data Reduction

    A survey on computational intelligence approaches for predictive modeling in prostate cancer

    Get PDF
    Predictive modeling in medicine involves the development of computational models which are capable of analysing large amounts of data in order to predict healthcare outcomes for individual patients. Computational intelligence approaches are suitable when the data to be modelled are too complex forconventional statistical techniques to process quickly and eciently. These advanced approaches are based on mathematical models that have been especially developed for dealing with the uncertainty and imprecision which is typically found in clinical and biological datasets. This paper provides a survey of recent work on computational intelligence approaches that have been applied to prostate cancer predictive modeling, and considers the challenges which need to be addressed. In particular, the paper considers a broad definition of computational intelligence which includes evolutionary algorithms (also known asmetaheuristic optimisation, nature inspired optimisation algorithms), Artificial Neural Networks, Deep Learning, Fuzzy based approaches, and hybrids of these,as well as Bayesian based approaches, and Markov models. Metaheuristic optimisation approaches, such as the Ant Colony Optimisation, Particle Swarm Optimisation, and Artificial Immune Network have been utilised for optimising the performance of prostate cancer predictive models, and the suitability of these approaches are discussed

    Distributed learning automata-based scheme for classification using novel pursuit scheme

    Get PDF
    Author's accepted manuscript.Available from 03/03/2021.This is a post-peer-review, pre-copyedit version of an article published in Applied Intelligence. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10489-019-01627-w.acceptedVersio

    Mining Aircraft Telemetry Data With Evolutionary Algorithms

    Get PDF
    The Ganged Phased Array Radar - Risk Mitigation System (GPAR-RMS) was a mobile ground-based sense-and-avoid system for Unmanned Aircraft System (UAS) operations developed by the University of North Dakota. GPAR-RMS detected proximate aircraft with various sensor systems, including a 2D radar and an Automatic Dependent Surveillance - Broadcast (ADS-B) receiver. Information about those aircraft was then displayed to UAS operators via visualization software developed by the University of North Dakota. The Risk Mitigation (RM) subsystem for GPAR-RMS was designed to estimate the current risk of midair collision, between the Unmanned Aircraft (UA) and a General Aviation (GA) aircraft flying under Visual Flight Rules (VFR) in the surrounding airspace, for UAS operations in Class E airspace (i.e. below 18,000 feet MSL). However, accurate probabilistic models for the behavior of pilots of GA aircraft flying under VFR in Class E airspace were needed before the RM subsystem could be implemented. In this dissertation the author presents the results of data mining an aircraft telemetry data set from a consecutive nine month period in 2011. This aircraft telemetry data set consisted of Flight Data Monitoring (FDM) data obtained from Garmin G1000 devices onboard every Cessna 172 in the University of North Dakota\u27s training fleet. Data from aircraft which were potentially within the controlled airspace surrounding controlled airports were excluded. Also, GA aircraft in the FDM data flying in Class E airspace were assumed to be flying under VFR, which is usually a valid assumption. Complex subpaths were discovered from the aircraft telemetry data set using a novel application of an ant colony algorithm. Then, probabilistic models were data mined from those subpaths using extensions of the Genetic K-Means (GKA) and Expectation- Maximization (EM) algorithms. The results obtained from the subpath discovery and data mining suggest a pilot flying a GA aircraft near to an uncontrolled airport will perform different maneuvers than a pilot flying a GA aircraft far from an uncontrolled airport, irrespective of the altitude of the GA aircraft. However, since only aircraft telemetry data from the University of North Dakota\u27s training fleet were data mined, these results are not likely to be applicable to GA aircraft operating in a non-training environment

    A Survey on Evolutionary Computation for Computer Vision and Image Analysis: Past, Present, and Future Trends

    Get PDF
    Computer vision (CV) is a big and important field in artificial intelligence covering a wide range of applications. Image analysis is a major task in CV aiming to extract, analyse and understand the visual content of images. However, imagerelated tasks are very challenging due to many factors, e.g., high variations across images, high dimensionality, domain expertise requirement, and image distortions. Evolutionary computation (EC) approaches have been widely used for image analysis with significant achievement. However, there is no comprehensive survey of existing EC approaches to image analysis. To fill this gap, this paper provides a comprehensive survey covering all essential EC approaches to important image analysis tasks including edge detection, image segmentation, image feature analysis, image classification, object detection, and others. This survey aims to provide a better understanding of evolutionary computer vision (ECV) by discussing the contributions of different approaches and exploring how and why EC is used for CV and image analysis. The applications, challenges, issues, and trends associated to this research field are also discussed and summarised to provide further guidelines and opportunities for future research

    Structure learning of Bayesian Networks using global optimization with applications in data classification

    Get PDF
    Bayesian Networks are increasingly popular methods of modeling uncertainty in artificial intelligence and machine learning. A Bayesian Network consists of a directed acyclic graph in which each node represents a variable and each arc represents probabilistic dependency between two variables. Constructing a Bayesian Network from data is a learning process that consists of two steps: learning structure and learning parameter. Learning a network structure from data is the most difficult task in this process. This paper presents a new algorithm for constructing an optimal structure for Bayesian Networks based on optimization. The algorithm has two major parts. First, we define an optimization model to find the better network graphs. Then, we apply an optimization approach for removing possible cycles from the directed graphs obtained in the first part which is the first of its kind in the literature. The main advantage of the proposed method is that the maximal number of parents for variables is not fixed a priory and it is defined during the optimization procedure. It also considers all networks including cyclic ones and then choose a best structure by applying a global optimization method. To show the efficiency of the algorithm, several closely related algorithms including unrestricted dependency Bayesian Network algorithm, as well as, benchmarks algorithms SVM and C4.5 are employed for comparison. We apply these algorithms on data classification; data sets are taken from the UCI machine learning repository and the LIBSVM. © 2014, Springer-Verlag Berlin Heidelberg

    Intrusion Detection: Embedded Software Machine Learning and Hardware Rules Based Co-Designs

    Get PDF
    Security of innovative technologies in future generation networks such as (Cyber Physical Systems (CPS) and Wi-Fi has become a critical universal issue for individuals, economy, enterprises, organizations and governments. The rate of cyber-attacks has increased dramatically, and the tactics used by the attackers are continuing to evolve and have become ingenious during the attacks. Intrusion Detection is one of the solutions against these attacks. One approach in designing an intrusion detection system (IDS) is software-based machine learning. Such approach can predict and detect threats before they result in major security incidents. Moreover, despite the considerable research in machine learning based designs, there is still a relatively small body of literature that is concerned with imbalanced class distributions from the intrusion detection system perspective. In addition, it is necessary to have an effective performance metric that can compare multiple multi-class as well as binary-class systems with respect to class distribution. Furthermore, the expectant detection techniques must have the ability to identify real attacks from random defects, ingrained defects in the design, misconfigurations of the system devices, system faults, human errors, and software implementation errors. Moreover, a lightweight IDS that is small, real-time, flexible and reconfigurable enough to be used as permanent elements of the system's security infrastructure is essential. The main goal of the current study is to design an effective and accurate intrusion detection framework with minimum features that are more discriminative and representative. Three publicly available datasets representing variant networking environments are adopted which also reflect realistic imbalanced class distributions as well as updated attack patterns. The presented intrusion detection framework is composed of three main modules: feature selection and dimensionality reduction, handling imbalanced class distributions, and classification. The feature selection mechanism utilizes searching algorithms and correlation based subset evaluation techniques, whereas the feature dimensionality reduction part utilizes principal component analysis and auto-encoder as an instance of deep learning. Various classifiers, including eight single-learning classifiers, four ensemble classifiers, one stacked classifier, and five imbalanced class handling approaches are evaluated to identify the most efficient and accurate one(s) for the proposed intrusion detection framework. A hardware-based approach to detect malicious behaviors of sensors and actuators embedded in medical devices, in which the safety of the patient is critical and of utmost importance, is additionally proposed. The idea is based on a methodology that transforms a device's behavior rules into a state machine to build a Behavior Specification Rules Monitoring (BSRM) tool for four medical devices. Simulation and synthesis results demonstrate that the BSRM tool can effectively identify the expected normal behavior of the device and detect any deviation from its normal behavior. The performance of the BSRM approach has also been compared with a machine learning based approach for the same problem. The FPGA module of the BSRM can be embedded in medical devices as an IDS and can be further integrated with the machine learning based approach. The reconfigurable nature of the FPGA chip adds an extra advantage to the designed model in which the behavior rules can be easily updated and tailored according to the requirements of the device, patient, treatment algorithm, and/or pervasive healthcare application
    corecore